Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Copy of compose_glide.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F | |
""" | |
import gradio as gr | |
import torch as th | |
from composable_diffusion.download import download_model | |
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr | |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr | |
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import \ | |
ComposableStableDiffusionPipeline | |
import os | |
import shutil | |
import time | |
import glob | |
import numpy as np | |
import open3d as o3d | |
import open3d.visualization.rendering as rendering | |
import plotly.graph_objects as go | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config | |
from point_e.diffusion.sampler import PointCloudSampler | |
from point_e.models.download import load_checkpoint | |
from point_e.models.configs import MODEL_CONFIGS, model_from_config | |
from point_e.util.pc_to_mesh import marching_cubes_mesh | |
has_cuda = th.cuda.is_available() | |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda') | |
print(has_cuda) | |
# init stable diffusion model | |
pipe = ComposableStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
).to(device) | |
pipe.safety_checker = None | |
# create model for CLEVR Objects | |
clevr_options = model_and_diffusion_defaults_for_clevr() | |
flags = { | |
"image_size": 128, | |
"num_channels": 192, | |
"num_res_blocks": 2, | |
"learn_sigma": True, | |
"use_scale_shift_norm": False, | |
"raw_unet": True, | |
"noise_schedule": "squaredcos_cap_v2", | |
"rescale_learned_sigmas": False, | |
"rescale_timesteps": False, | |
"num_classes": '2', | |
"dataset": "clevr_pos", | |
"use_fp16": has_cuda, | |
"timestep_respacing": '100' | |
} | |
for key, val in flags.items(): | |
clevr_options[key] = val | |
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options) | |
clevr_model.eval() | |
if has_cuda: | |
clevr_model.convert_to_fp16() | |
clevr_model.to(device) | |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device)) | |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda') | |
print('creating base model...') | |
base_name = 'base40M-textvec' | |
base_model = model_from_config(MODEL_CONFIGS[base_name], device) | |
base_model.eval() | |
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) | |
print('creating upsample model...') | |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) | |
upsampler_model.eval() | |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) | |
print('downloading base checkpoint...') | |
base_model.load_state_dict(load_checkpoint(base_name, device)) | |
print('downloading upsampler checkpoint...') | |
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) | |
print('creating SDF model...') | |
name = 'sdf' | |
model = model_from_config(MODEL_CONFIGS[name], device) | |
model.eval() | |
print('loading SDF model...') | |
model.load_state_dict(load_checkpoint(name, device)) | |
def compose_pointe(prompt, weights, version): | |
weight_list = [float(x.strip()) for x in weights.split('|')] | |
sampler = PointCloudSampler( | |
device=device, | |
models=[base_model, upsampler_model], | |
diffusions=[base_diffusion, upsampler_diffusion], | |
num_points=[1024, 4096 - 1024], | |
aux_channels=['R', 'G', 'B'], | |
guidance_scale=[weight_list, 0.0], | |
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all | |
) | |
def generate_pcd(prompt_list): | |
# Produce a sample from the model. | |
samples = None | |
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))): | |
samples = x | |
return samples | |
def generate_fig(samples): | |
pc = sampler.output_to_point_clouds(samples)[0] | |
return pc | |
def generate_mesh(pc): | |
mesh = marching_cubes_mesh( | |
pc=pc, | |
model=model, | |
batch_size=4096, | |
grid_size=128, # increase to 128 for resolution used in evals | |
progress=True, | |
) | |
return mesh | |
def generate_video(mesh_path): | |
render = rendering.OffscreenRenderer(640, 480) | |
mesh = o3d.io.read_triangle_mesh(mesh_path) | |
mesh.compute_vertex_normals() | |
mat = o3d.visualization.rendering.MaterialRecord() | |
mat.shader = 'defaultLit' | |
render.scene.camera.look_at([0, 0, 0], [1, 1, 1], [0, 0, 1]) | |
render.scene.add_geometry('mesh', mesh, mat) | |
timestr = time.strftime("%Y%m%d-%H%M%S") | |
os.makedirs(timestr, exist_ok=True) | |
def update_geometry(): | |
render.scene.clear_geometry() | |
render.scene.add_geometry('mesh', mesh, mat) | |
def generate_images(): | |
for i in range(64): | |
# Rotation | |
R = mesh.get_rotation_matrix_from_xyz((0, 0, np.pi / 32)) | |
mesh.rotate(R, center=(0, 0, 0)) | |
# Update geometry | |
update_geometry() | |
img = render.render_to_image() | |
o3d.io.write_image(os.path.join(timestr + "/{:05d}.jpg".format(i)), img, quality=100) | |
time.sleep(0.05) | |
generate_images() | |
image_list = [] | |
for filename in sorted(glob.glob(f'{timestr}/*.jpg')): # assuming gif | |
im = Image.open(filename) | |
image_list.append(im) | |
# remove the folder | |
shutil.rmtree(timestr) | |
return image_list | |
prompt_list = [x.strip() for x in prompt.split("|")] | |
pcd = generate_pcd(prompt_list) | |
pc = generate_fig(pcd) | |
fig = go.Figure( | |
data=[ | |
go.Scatter3d( | |
x=pc.coords[:, 0], y=pc.coords[:, 1], z=pc.coords[:, 2], | |
mode='markers', | |
marker=dict( | |
size=2, | |
color=['rgb({},{},{})'.format(r, g, b) for r, g, b in | |
zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], | |
) | |
) | |
], | |
layout=dict( | |
scene=dict( | |
xaxis=dict(visible=False), | |
yaxis=dict(visible=False), | |
zaxis=dict(visible=False) | |
) | |
), | |
) | |
return fig | |
# huggingface failed to render, so we only visualize pointclouds | |
# mesh = generate_mesh(pc) | |
# timestr = time.strftime("%Y%m%d-%H%M%S") | |
# mesh_path = os.path.join(f'{timestr}.ply') | |
# with open(mesh_path, 'wb') as f: | |
# mesh.write_ply(f) | |
# image_frames = generate_video(mesh_path) | |
# gif_path = os.path.join(f'{timestr}.gif') | |
# image_frames[0].save(gif_path, save_all=True, optimizer=False, duration=5, append_images=image_frames[1:], loop=0) | |
# return f'{timestr}.gif' | |
def compose_clevr_objects(prompt, weights, steps): | |
weights = [float(x.strip()) for x in weights.split('|')] | |
weights = th.tensor(weights, device=device).reshape(-1, 1, 1, 1) | |
coordinates = [ | |
[ | |
float(x.split(',')[0].strip()), float(x.split(',')[1].strip())] | |
for x in prompt.split('|') | |
] | |
coordinates += [[-1, -1]] # add unconditional score label | |
batch_size = 1 | |
clevr_options['timestep_respacing'] = str(int(steps)) | |
_, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options) | |
def model_fn(x_t, ts, **kwargs): | |
half = x_t[:1] | |
combined = th.cat([half] * kwargs['y'].size(0), dim=0) | |
model_out = clevr_model(combined, ts, **kwargs) | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
masks = kwargs.get('masks') | |
cond_eps = eps[masks] | |
uncond_eps = eps[~masks] | |
half_eps = uncond_eps + (weights * (cond_eps - uncond_eps)).sum(dim=0, keepdims=True) | |
eps = th.cat([half_eps] * x_t.size(0), dim=0) | |
return th.cat([eps, rest], dim=1) | |
def sample(coordinates): | |
masks = [True] * (len(coordinates) - 1) + [False] | |
model_kwargs = dict( | |
y=th.tensor(coordinates, dtype=th.float, device=device), | |
masks=th.tensor(masks, dtype=th.bool, device=device) | |
) | |
samples = clevr_diffusion.p_sample_loop( | |
model_fn, | |
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]), | |
device=device, | |
clip_denoised=True, | |
progress=True, | |
model_kwargs=model_kwargs, | |
cond_fn=None, | |
)[:batch_size] | |
return samples | |
samples = sample(coordinates) | |
out_img = samples[0].permute(1, 2, 0) | |
out_img = (out_img + 1) / 2 | |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8) | |
out_img = out_img.numpy() | |
return out_img | |
def stable_diffusion_compose(prompt, steps, weights, seed): | |
generator = th.Generator("cuda").manual_seed(int(seed)) | |
image = pipe(prompt, guidance_scale=7.5, num_inference_steps=steps, | |
weights=weights, generator=generator).images[0] | |
image.save(f'{"_".join(prompt.split())}.png') | |
return image | |
def compose_2D_diffusion(prompt, weights, version, steps, seed): | |
try: | |
with th.no_grad(): | |
if version == 'Stable_Diffusion_1v_4': | |
res = stable_diffusion_compose(prompt, steps, weights, seed) | |
return res | |
else: | |
return compose_clevr_objects(prompt, weights, steps) | |
except Exception as e: | |
return None | |
examples_1 = "A castle in a forest | grainy, fog" | |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5' | |
examples_5 = 'a white church | lightning in the background' | |
examples_6 = 'mystical trees | A dark magical pond | dark' | |
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake' | |
image_examples = [ | |
[examples_6, "7.5 | 7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 8], | |
[examples_6, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 8], | |
[examples_1, "7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 0], | |
[examples_7, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 3], | |
[examples_5, "7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 0], | |
[examples_3, "7.5 | 7.5 | 7.5 | 7.5 | 7.5", 'CLEVR Objects', 100, 0] | |
] | |
pointe_examples = [["a cake | a house", "7.5 | 7.5", 'Point-E'], | |
["a green avocado | a chair", "7.5 | 3", 'Point-E'], | |
["a toilet | a chair", "7 | 5", 'Point-E']] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
"""<h1 style="text-align: center;"><b>Composable Diffusion Models (ECCV | |
2022)</b> - <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion | |
-Models/">Project Page</a></h1>""") | |
gr.Markdown( | |
"""<table style="display: inline-table; table-layout: fixed; width: 100%;"> | |
<tr> | |
<td> | |
<figure> | |
<img src="https://media.giphy.com/media/gKfDjdXy0lbYNyROKo/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;"> | |
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND</span> "Dark"</figcaption> | |
</figure> | |
</td> | |
<td> | |
<figure> | |
<img src="https://media.giphy.com/media/sf5m1Z5FldemLMatWn/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;"> | |
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND NOT</span> "Dark"</figcaption> | |
</figure> | |
</td> | |
<td> | |
<figure> | |
<img src="https://media.giphy.com/media/lTzdW41bFnrD8AYa0K/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;"> | |
<figcaption style="color: black; font-size: 15px; text-align: center;">"A toilet" <span style="color: red">AND</span> "A chair"</figcaption> | |
</figure> | |
</td> | |
<td> | |
<figure> | |
<img src="https://media.giphy.com/media/nFkMh70kzZCwjbRrx5/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;"> | |
<figcaption style="color: black; font-size: 15px; text-align: center;">"A monitor" <span style="color: red">AND</span> "A brown couch"</figcaption> | |
</figure> | |
</td> | |
</tr> | |
</table> | |
""" | |
) | |
gr.Markdown( | |
"""<p style="font-size: 18px;">Compositional visual generation by composing pre-trained diffusion models | |
using compositional operators, <b>AND</b> and <b>NOT</b>.</p>""") | |
gr.Markdown( | |
"""<p style="font-size: 18px;">When composing multiple inputs, please use <b>β|β</b> to separate them </p>""") | |
gr.Markdown( | |
"""<p>( <b>Note</b>: For composing CLEVR objects, we recommend using <b><i>x</i></b> in range <b><i>[0.1, | |
0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in | |
given ranges.)</p><hr>""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
"""<h4>Composing natural language descriptions / objects for 2D image | |
generation</h4>""") | |
with gr.Row(): | |
text_input = gr.Textbox(value="mystical trees | A dark magical pond | dark", label="Text to image prompt") | |
weights_input = gr.Textbox(value="7.5 | 7.5 | 7.5", label="Weights") | |
with gr.Row(): | |
seed_input = gr.Number(0, label="Seed") | |
steps_input = gr.Slider(10, 200, value=50, label="Steps") | |
with gr.Row(): | |
model_input = gr.Radio( | |
['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='Text to image model', | |
value='Stable_Diffusion_1v_4') | |
image_output = gr.Image() | |
image_button = gr.Button("Generate") | |
img_examples = gr.Examples( | |
examples=image_examples, | |
inputs=[text_input, weights_input, model_input, steps_input, seed_input] | |
) | |
with gr.Column(): | |
gr.Markdown( | |
"""<h4>Composing natural language descriptions for 3D asset generation</h4>""") | |
with gr.Row(): | |
asset_input = gr.Textbox(value="a cake | a house", label="Text to 3D prompt") | |
with gr.Row(): | |
asset_weights = gr.Textbox(value="7.5 | 7.5", label="Weights") | |
with gr.Row(): | |
asset_model = gr.Radio(['Point-E'], type="value", label='Text to 3D model', value='Point-E') | |
# asset_output = gr.Image(label='GIF') | |
asset_output = gr.Plot(label='Plot') | |
asset_button = gr.Button("Generate") | |
asset_examples = gr.Examples(examples=pointe_examples, inputs=[asset_input, asset_weights, asset_model]) | |
image_button.click(compose_2D_diffusion, | |
inputs=[text_input, weights_input, model_input, steps_input, seed_input], | |
outputs=image_output) | |
asset_button.click(compose_pointe, inputs=[asset_input, asset_weights, asset_model], outputs=asset_output) | |
if __name__ == "__main__": | |
demo.queue(max_size=5) | |
demo.launch(debug=True) | |