Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
8 |
"""
|
9 |
|
10 |
-
|
11 |
# from PIL import Image
|
12 |
# from IPython.display import display
|
13 |
import torch as th
|
@@ -25,6 +24,7 @@ from composable_diffusion.model_creation import create_model_and_diffusion as cr
|
|
25 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
26 |
|
27 |
|
|
|
28 |
# This notebook supports both CPU and GPU.
|
29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
30 |
# On a GPU, it should be under a minute.
|
@@ -34,10 +34,10 @@ device = th.device('cpu' if not has_cuda else 'cuda')
|
|
34 |
print(device)
|
35 |
|
36 |
# Create base model.
|
37 |
-
timestep_respacing =
|
38 |
options = model_and_diffusion_defaults()
|
39 |
options['use_fp16'] = has_cuda
|
40 |
-
options['timestep_respacing'] = str(timestep_respacing)
|
41 |
model, diffusion = create_model_and_diffusion(**options)
|
42 |
model.eval()
|
43 |
if has_cuda:
|
@@ -49,7 +49,7 @@ print('total base parameters', sum(x.numel() for x in model.parameters()))
|
|
49 |
# Create upsampler model.
|
50 |
options_up = model_and_diffusion_defaults_upsampler()
|
51 |
options_up['use_fp16'] = has_cuda
|
52 |
-
options_up['timestep_respacing'] = 'fast27'
|
53 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
54 |
model_up.eval()
|
55 |
if has_cuda:
|
@@ -58,146 +58,145 @@ model_up.to(device)
|
|
58 |
model_up.load_state_dict(load_checkpoint('upsample', device))
|
59 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
60 |
|
|
|
61 |
def show_images(batch: th.Tensor):
|
62 |
""" Display a batch of images inline. """
|
63 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
64 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
65 |
display(Image.fromarray(reshaped.numpy()))
|
66 |
|
|
|
67 |
def compose_language_descriptions(prompt, guidance_scale):
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
device=device,
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
)
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
165 |
device=device,
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
)
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
# show_images(samples)
|
191 |
-
|
192 |
-
# upsample from 64x64 to 256x256
|
193 |
-
upsamples = upsampling_256(prompts, samples)
|
194 |
-
# show_images(upsamples)
|
195 |
-
|
196 |
-
out_img = upsamples[0].permute(1,2,0)
|
197 |
-
out_img = (out_img+1)/2
|
198 |
-
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
199 |
-
out_img = out_img.numpy()
|
200 |
-
return out_img
|
201 |
|
202 |
# create model for CLEVR Objects
|
203 |
clevr_options = model_and_diffusion_defaults_for_clevr()
|
@@ -219,24 +218,24 @@ flags = {
|
|
219 |
}
|
220 |
|
221 |
for key, val in flags.items():
|
222 |
-
|
223 |
|
224 |
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
225 |
clevr_model.eval()
|
226 |
if has_cuda:
|
227 |
clevr_model.convert_to_fp16()
|
228 |
-
|
229 |
clevr_model.to(device)
|
230 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
231 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
232 |
|
|
|
233 |
def compose_clevr_objects(prompt, guidance_scale):
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
coordinates += [[-1, -1]] # add unconditional score label
|
238 |
batch_size = 1
|
239 |
-
|
240 |
def model_fn(x_t, ts, **kwargs):
|
241 |
half = x_t[:1]
|
242 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
@@ -248,7 +247,7 @@ def compose_clevr_objects(prompt, guidance_scale):
|
|
248 |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
249 |
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
250 |
return th.cat([eps, rest], dim=1)
|
251 |
-
|
252 |
def sample(coordinates):
|
253 |
masks = [True] * (len(coordinates) - 1) + [False]
|
254 |
model_kwargs = dict(
|
@@ -257,21 +256,23 @@ def compose_clevr_objects(prompt, guidance_scale):
|
|
257 |
)
|
258 |
samples = clevr_diffusion.p_sample_loop(
|
259 |
model_fn,
|
260 |
-
(len(coordinates), 3,
|
261 |
device=device,
|
262 |
clip_denoised=True,
|
263 |
progress=True,
|
264 |
model_kwargs=model_kwargs,
|
265 |
cond_fn=None,
|
266 |
)[:batch_size]
|
267 |
-
|
268 |
return samples
|
269 |
|
270 |
samples = sample(coordinates)
|
271 |
-
out_img = samples[0].permute(1,2,0)
|
272 |
-
out_img = (out_img+1)/2
|
273 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
274 |
out_img = out_img.numpy()
|
|
|
|
|
275 |
return out_img
|
276 |
|
277 |
|
@@ -281,6 +282,7 @@ def compose(prompt, version, guidance_scale):
|
|
281 |
else:
|
282 |
return compose_clevr_objects(prompt, guidance_scale)
|
283 |
|
|
|
284 |
examples_1 = 'a camel | a forest'
|
285 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
286 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
@@ -289,8 +291,9 @@ examples = [[examples_1, 'GLIDE', 10], [examples_2, 'GLIDE', 10], [examples_3, '
|
|
289 |
import gradio as gr
|
290 |
|
291 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
292 |
-
description = '<p>Demo for Composable Diffusion (
|
293 |
|
294 |
-
iface = gr.Interface(compose, inputs=["text", gr.
|
|
|
295 |
|
296 |
iface.launch()
|
|
|
7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
8 |
"""
|
9 |
|
|
|
10 |
# from PIL import Image
|
11 |
# from IPython.display import display
|
12 |
import torch as th
|
|
|
24 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
25 |
|
26 |
|
27 |
+
from PIL import Image
|
28 |
# This notebook supports both CPU and GPU.
|
29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
30 |
# On a GPU, it should be under a minute.
|
|
|
34 |
print(device)
|
35 |
|
36 |
# Create base model.
|
37 |
+
timestep_respacing = 100 # @param{type: 'number'}
|
38 |
options = model_and_diffusion_defaults()
|
39 |
options['use_fp16'] = has_cuda
|
40 |
+
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
|
41 |
model, diffusion = create_model_and_diffusion(**options)
|
42 |
model.eval()
|
43 |
if has_cuda:
|
|
|
49 |
# Create upsampler model.
|
50 |
options_up = model_and_diffusion_defaults_upsampler()
|
51 |
options_up['use_fp16'] = has_cuda
|
52 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
53 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
54 |
model_up.eval()
|
55 |
if has_cuda:
|
|
|
58 |
model_up.load_state_dict(load_checkpoint('upsample', device))
|
59 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
60 |
|
61 |
+
|
62 |
def show_images(batch: th.Tensor):
|
63 |
""" Display a batch of images inline. """
|
64 |
+
scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu()
|
65 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
66 |
display(Image.fromarray(reshaped.numpy()))
|
67 |
|
68 |
+
|
69 |
def compose_language_descriptions(prompt, guidance_scale):
|
70 |
+
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
71 |
+
prompts = [x.strip() for x in prompt.split('|')]
|
72 |
+
|
73 |
+
batch_size = 1
|
74 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
75 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
76 |
+
upsample_temp = 0.980 # @param{type: 'number'}
|
77 |
+
|
78 |
+
masks = [True] * len(prompts) + [False]
|
79 |
+
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
|
80 |
+
masks = th.tensor(masks, dtype=th.bool, device=device)
|
81 |
+
|
82 |
+
# sampling function
|
83 |
+
def model_fn(x_t, ts, **kwargs):
|
84 |
+
half = x_t[:1]
|
85 |
+
combined = th.cat([half] * x_t.size(0), dim=0)
|
86 |
+
model_out = model(combined, ts, **kwargs)
|
87 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
88 |
+
cond_eps = eps[masks].mean(dim=0, keepdim=True)
|
89 |
+
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
|
90 |
+
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
|
91 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
92 |
+
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
93 |
+
return th.cat([eps, rest], dim=1)
|
94 |
+
|
95 |
+
##############################
|
96 |
+
# Sample from the base model #
|
97 |
+
##############################
|
98 |
+
|
99 |
+
# Create the text tokens to feed to the model.
|
100 |
+
def sample_64(prompts):
|
101 |
+
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
|
102 |
+
outputs = [model.tokenizer.padded_tokens_and_mask(
|
103 |
+
tokens, options['text_ctx']
|
104 |
+
) for tokens in tokens_list]
|
105 |
+
|
106 |
+
cond_tokens, cond_masks = zip(*outputs)
|
107 |
+
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)
|
108 |
+
|
109 |
+
full_batch_size = batch_size * (len(prompts) + 1)
|
110 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
111 |
+
[], options['text_ctx']
|
112 |
+
)
|
113 |
+
|
114 |
+
# Pack the tokens together into model kwargs.
|
115 |
+
model_kwargs = dict(
|
116 |
+
tokens=th.tensor(
|
117 |
+
cond_tokens + [uncond_tokens], device=device
|
118 |
+
),
|
119 |
+
mask=th.tensor(
|
120 |
+
cond_masks + [uncond_mask],
|
121 |
+
dtype=th.bool,
|
122 |
+
device=device,
|
123 |
+
),
|
124 |
+
)
|
125 |
+
|
126 |
+
# Sample from the base model.
|
127 |
+
model.del_cache()
|
128 |
+
samples = diffusion.p_sample_loop(
|
129 |
+
model_fn,
|
130 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
131 |
device=device,
|
132 |
+
clip_denoised=True,
|
133 |
+
progress=True,
|
134 |
+
model_kwargs=model_kwargs,
|
135 |
+
cond_fn=None,
|
136 |
+
)[:batch_size]
|
137 |
+
model.del_cache()
|
138 |
+
|
139 |
+
# Show the output
|
140 |
+
return samples
|
141 |
+
|
142 |
+
##############################
|
143 |
+
# Upsample the 64x64 samples #
|
144 |
+
##############################
|
145 |
+
|
146 |
+
def upsampling_256(prompts, samples):
|
147 |
+
tokens = model_up.tokenizer.encode("".join(prompts))
|
148 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
149 |
+
tokens, options_up['text_ctx']
|
150 |
+
)
|
151 |
+
|
152 |
+
# Create the model conditioning dict.
|
153 |
+
model_kwargs = dict(
|
154 |
+
# Low-res image to upsample.
|
155 |
+
low_res=((samples + 1) * 127.5).round() / 127.5 - 1,
|
156 |
+
|
157 |
+
# Text tokens
|
158 |
+
tokens=th.tensor(
|
159 |
+
[tokens] * batch_size, device=device
|
160 |
+
),
|
161 |
+
mask=th.tensor(
|
162 |
+
[mask] * batch_size,
|
163 |
+
dtype=th.bool,
|
164 |
+
device=device,
|
165 |
+
),
|
166 |
+
)
|
167 |
+
|
168 |
+
# Sample from the base model.
|
169 |
+
model_up.del_cache()
|
170 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
171 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
172 |
+
model_up,
|
173 |
+
up_shape,
|
174 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
175 |
device=device,
|
176 |
+
clip_denoised=True,
|
177 |
+
progress=True,
|
178 |
+
model_kwargs=model_kwargs,
|
179 |
+
cond_fn=None,
|
180 |
+
)[:batch_size]
|
181 |
+
model_up.del_cache()
|
182 |
+
|
183 |
+
# Show the output
|
184 |
+
return up_samples
|
185 |
+
|
186 |
+
# sampling 64x64 images
|
187 |
+
samples = sample_64(prompts)
|
188 |
+
# show_images(samples)
|
189 |
+
|
190 |
+
# upsample from 64x64 to 256x256
|
191 |
+
upsamples = upsampling_256(prompts, samples)
|
192 |
+
# show_images(upsamples)
|
193 |
+
|
194 |
+
out_img = upsamples[0].permute(1, 2, 0)
|
195 |
+
out_img = (out_img + 1) / 2
|
196 |
+
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
197 |
+
out_img = out_img.numpy()
|
198 |
+
return out_img
|
199 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
# create model for CLEVR Objects
|
202 |
clevr_options = model_and_diffusion_defaults_for_clevr()
|
|
|
218 |
}
|
219 |
|
220 |
for key, val in flags.items():
|
221 |
+
clevr_options[key] = val
|
222 |
|
223 |
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
224 |
clevr_model.eval()
|
225 |
if has_cuda:
|
226 |
clevr_model.convert_to_fp16()
|
227 |
+
|
228 |
clevr_model.to(device)
|
229 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
230 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
231 |
|
232 |
+
|
233 |
def compose_clevr_objects(prompt, guidance_scale):
|
234 |
+
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
235 |
+
for x in prompt.split('|')]
|
236 |
+
coordinates += [[-1, -1]] # add unconditional score label
|
|
|
237 |
batch_size = 1
|
238 |
+
|
239 |
def model_fn(x_t, ts, **kwargs):
|
240 |
half = x_t[:1]
|
241 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
|
|
247 |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
248 |
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
249 |
return th.cat([eps, rest], dim=1)
|
250 |
+
|
251 |
def sample(coordinates):
|
252 |
masks = [True] * (len(coordinates) - 1) + [False]
|
253 |
model_kwargs = dict(
|
|
|
256 |
)
|
257 |
samples = clevr_diffusion.p_sample_loop(
|
258 |
model_fn,
|
259 |
+
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
|
260 |
device=device,
|
261 |
clip_denoised=True,
|
262 |
progress=True,
|
263 |
model_kwargs=model_kwargs,
|
264 |
cond_fn=None,
|
265 |
)[:batch_size]
|
266 |
+
|
267 |
return samples
|
268 |
|
269 |
samples = sample(coordinates)
|
270 |
+
out_img = samples[0].permute(1, 2, 0)
|
271 |
+
out_img = (out_img + 1) / 2
|
272 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
273 |
out_img = out_img.numpy()
|
274 |
+
Image.fromarray(out_img).convert('RGB').save('test.png')
|
275 |
+
|
276 |
return out_img
|
277 |
|
278 |
|
|
|
282 |
else:
|
283 |
return compose_clevr_objects(prompt, guidance_scale)
|
284 |
|
285 |
+
|
286 |
examples_1 = 'a camel | a forest'
|
287 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
288 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
|
|
291 |
import gradio as gr
|
292 |
|
293 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
294 |
+
description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is measured by per example if gpu is used, otherwise it will take quite a bit of time.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
|
295 |
|
296 |
+
iface = gr.Interface(compose, inputs=["text", gr.Radio(['GLIDE', 'CLEVR Objects'], type="value", label='version'), gr.Slider(1, 20)], outputs='image',
|
297 |
+
title=title, description=description, examples=examples)
|
298 |
|
299 |
iface.launch()
|