Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ Original file is located at
|
|
| 7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
| 8 |
"""
|
| 9 |
|
| 10 |
-
|
| 11 |
# from PIL import Image
|
| 12 |
# from IPython.display import display
|
| 13 |
import torch as th
|
|
@@ -25,6 +24,7 @@ from composable_diffusion.model_creation import create_model_and_diffusion as cr
|
|
| 25 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
| 26 |
|
| 27 |
|
|
|
|
| 28 |
# This notebook supports both CPU and GPU.
|
| 29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 30 |
# On a GPU, it should be under a minute.
|
|
@@ -34,10 +34,10 @@ device = th.device('cpu' if not has_cuda else 'cuda')
|
|
| 34 |
print(device)
|
| 35 |
|
| 36 |
# Create base model.
|
| 37 |
-
timestep_respacing =
|
| 38 |
options = model_and_diffusion_defaults()
|
| 39 |
options['use_fp16'] = has_cuda
|
| 40 |
-
options['timestep_respacing'] = str(timestep_respacing)
|
| 41 |
model, diffusion = create_model_and_diffusion(**options)
|
| 42 |
model.eval()
|
| 43 |
if has_cuda:
|
|
@@ -49,7 +49,7 @@ print('total base parameters', sum(x.numel() for x in model.parameters()))
|
|
| 49 |
# Create upsampler model.
|
| 50 |
options_up = model_and_diffusion_defaults_upsampler()
|
| 51 |
options_up['use_fp16'] = has_cuda
|
| 52 |
-
options_up['timestep_respacing'] = 'fast27'
|
| 53 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 54 |
model_up.eval()
|
| 55 |
if has_cuda:
|
|
@@ -58,146 +58,145 @@ model_up.to(device)
|
|
| 58 |
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 59 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 60 |
|
|
|
|
| 61 |
def show_images(batch: th.Tensor):
|
| 62 |
""" Display a batch of images inline. """
|
| 63 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 64 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 65 |
display(Image.fromarray(reshaped.numpy()))
|
| 66 |
|
|
|
|
| 67 |
def compose_language_descriptions(prompt, guidance_scale):
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
device=device,
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
| 165 |
device=device,
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# show_images(samples)
|
| 191 |
-
|
| 192 |
-
# upsample from 64x64 to 256x256
|
| 193 |
-
upsamples = upsampling_256(prompts, samples)
|
| 194 |
-
# show_images(upsamples)
|
| 195 |
-
|
| 196 |
-
out_img = upsamples[0].permute(1,2,0)
|
| 197 |
-
out_img = (out_img+1)/2
|
| 198 |
-
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
| 199 |
-
out_img = out_img.numpy()
|
| 200 |
-
return out_img
|
| 201 |
|
| 202 |
# create model for CLEVR Objects
|
| 203 |
clevr_options = model_and_diffusion_defaults_for_clevr()
|
|
@@ -219,24 +218,24 @@ flags = {
|
|
| 219 |
}
|
| 220 |
|
| 221 |
for key, val in flags.items():
|
| 222 |
-
|
| 223 |
|
| 224 |
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
| 225 |
clevr_model.eval()
|
| 226 |
if has_cuda:
|
| 227 |
clevr_model.convert_to_fp16()
|
| 228 |
-
|
| 229 |
clevr_model.to(device)
|
| 230 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
| 231 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
| 232 |
|
|
|
|
| 233 |
def compose_clevr_objects(prompt, guidance_scale):
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
coordinates += [[-1, -1]] # add unconditional score label
|
| 238 |
batch_size = 1
|
| 239 |
-
|
| 240 |
def model_fn(x_t, ts, **kwargs):
|
| 241 |
half = x_t[:1]
|
| 242 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
|
@@ -248,7 +247,7 @@ def compose_clevr_objects(prompt, guidance_scale):
|
|
| 248 |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 249 |
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
| 250 |
return th.cat([eps, rest], dim=1)
|
| 251 |
-
|
| 252 |
def sample(coordinates):
|
| 253 |
masks = [True] * (len(coordinates) - 1) + [False]
|
| 254 |
model_kwargs = dict(
|
|
@@ -257,21 +256,23 @@ def compose_clevr_objects(prompt, guidance_scale):
|
|
| 257 |
)
|
| 258 |
samples = clevr_diffusion.p_sample_loop(
|
| 259 |
model_fn,
|
| 260 |
-
(len(coordinates), 3,
|
| 261 |
device=device,
|
| 262 |
clip_denoised=True,
|
| 263 |
progress=True,
|
| 264 |
model_kwargs=model_kwargs,
|
| 265 |
cond_fn=None,
|
| 266 |
)[:batch_size]
|
| 267 |
-
|
| 268 |
return samples
|
| 269 |
|
| 270 |
samples = sample(coordinates)
|
| 271 |
-
out_img = samples[0].permute(1,2,0)
|
| 272 |
-
out_img = (out_img+1)/2
|
| 273 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
| 274 |
out_img = out_img.numpy()
|
|
|
|
|
|
|
| 275 |
return out_img
|
| 276 |
|
| 277 |
|
|
@@ -281,6 +282,7 @@ def compose(prompt, version, guidance_scale):
|
|
| 281 |
else:
|
| 282 |
return compose_clevr_objects(prompt, guidance_scale)
|
| 283 |
|
|
|
|
| 284 |
examples_1 = 'a camel | a forest'
|
| 285 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
| 286 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
|
@@ -289,8 +291,9 @@ examples = [[examples_1, 'GLIDE', 10], [examples_2, 'GLIDE', 10], [examples_3, '
|
|
| 289 |
import gradio as gr
|
| 290 |
|
| 291 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
| 292 |
-
description = '<p>Demo for Composable Diffusion (
|
| 293 |
|
| 294 |
-
iface = gr.Interface(compose, inputs=["text", gr.
|
|
|
|
| 295 |
|
| 296 |
iface.launch()
|
|
|
|
| 7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
| 8 |
"""
|
| 9 |
|
|
|
|
| 10 |
# from PIL import Image
|
| 11 |
# from IPython.display import display
|
| 12 |
import torch as th
|
|
|
|
| 24 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
| 25 |
|
| 26 |
|
| 27 |
+
from PIL import Image
|
| 28 |
# This notebook supports both CPU and GPU.
|
| 29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 30 |
# On a GPU, it should be under a minute.
|
|
|
|
| 34 |
print(device)
|
| 35 |
|
| 36 |
# Create base model.
|
| 37 |
+
timestep_respacing = 100 # @param{type: 'number'}
|
| 38 |
options = model_and_diffusion_defaults()
|
| 39 |
options['use_fp16'] = has_cuda
|
| 40 |
+
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
|
| 41 |
model, diffusion = create_model_and_diffusion(**options)
|
| 42 |
model.eval()
|
| 43 |
if has_cuda:
|
|
|
|
| 49 |
# Create upsampler model.
|
| 50 |
options_up = model_and_diffusion_defaults_upsampler()
|
| 51 |
options_up['use_fp16'] = has_cuda
|
| 52 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 53 |
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 54 |
model_up.eval()
|
| 55 |
if has_cuda:
|
|
|
|
| 58 |
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 59 |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 60 |
|
| 61 |
+
|
| 62 |
def show_images(batch: th.Tensor):
|
| 63 |
""" Display a batch of images inline. """
|
| 64 |
+
scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu()
|
| 65 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 66 |
display(Image.fromarray(reshaped.numpy()))
|
| 67 |
|
| 68 |
+
|
| 69 |
def compose_language_descriptions(prompt, guidance_scale):
|
| 70 |
+
# @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
| 71 |
+
prompts = [x.strip() for x in prompt.split('|')]
|
| 72 |
+
|
| 73 |
+
batch_size = 1
|
| 74 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 75 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 76 |
+
upsample_temp = 0.980 # @param{type: 'number'}
|
| 77 |
+
|
| 78 |
+
masks = [True] * len(prompts) + [False]
|
| 79 |
+
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
|
| 80 |
+
masks = th.tensor(masks, dtype=th.bool, device=device)
|
| 81 |
+
|
| 82 |
+
# sampling function
|
| 83 |
+
def model_fn(x_t, ts, **kwargs):
|
| 84 |
+
half = x_t[:1]
|
| 85 |
+
combined = th.cat([half] * x_t.size(0), dim=0)
|
| 86 |
+
model_out = model(combined, ts, **kwargs)
|
| 87 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 88 |
+
cond_eps = eps[masks].mean(dim=0, keepdim=True)
|
| 89 |
+
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
|
| 90 |
+
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
|
| 91 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 92 |
+
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
| 93 |
+
return th.cat([eps, rest], dim=1)
|
| 94 |
+
|
| 95 |
+
##############################
|
| 96 |
+
# Sample from the base model #
|
| 97 |
+
##############################
|
| 98 |
+
|
| 99 |
+
# Create the text tokens to feed to the model.
|
| 100 |
+
def sample_64(prompts):
|
| 101 |
+
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
|
| 102 |
+
outputs = [model.tokenizer.padded_tokens_and_mask(
|
| 103 |
+
tokens, options['text_ctx']
|
| 104 |
+
) for tokens in tokens_list]
|
| 105 |
+
|
| 106 |
+
cond_tokens, cond_masks = zip(*outputs)
|
| 107 |
+
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)
|
| 108 |
+
|
| 109 |
+
full_batch_size = batch_size * (len(prompts) + 1)
|
| 110 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 111 |
+
[], options['text_ctx']
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Pack the tokens together into model kwargs.
|
| 115 |
+
model_kwargs = dict(
|
| 116 |
+
tokens=th.tensor(
|
| 117 |
+
cond_tokens + [uncond_tokens], device=device
|
| 118 |
+
),
|
| 119 |
+
mask=th.tensor(
|
| 120 |
+
cond_masks + [uncond_mask],
|
| 121 |
+
dtype=th.bool,
|
| 122 |
+
device=device,
|
| 123 |
+
),
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Sample from the base model.
|
| 127 |
+
model.del_cache()
|
| 128 |
+
samples = diffusion.p_sample_loop(
|
| 129 |
+
model_fn,
|
| 130 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 131 |
device=device,
|
| 132 |
+
clip_denoised=True,
|
| 133 |
+
progress=True,
|
| 134 |
+
model_kwargs=model_kwargs,
|
| 135 |
+
cond_fn=None,
|
| 136 |
+
)[:batch_size]
|
| 137 |
+
model.del_cache()
|
| 138 |
+
|
| 139 |
+
# Show the output
|
| 140 |
+
return samples
|
| 141 |
+
|
| 142 |
+
##############################
|
| 143 |
+
# Upsample the 64x64 samples #
|
| 144 |
+
##############################
|
| 145 |
+
|
| 146 |
+
def upsampling_256(prompts, samples):
|
| 147 |
+
tokens = model_up.tokenizer.encode("".join(prompts))
|
| 148 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 149 |
+
tokens, options_up['text_ctx']
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Create the model conditioning dict.
|
| 153 |
+
model_kwargs = dict(
|
| 154 |
+
# Low-res image to upsample.
|
| 155 |
+
low_res=((samples + 1) * 127.5).round() / 127.5 - 1,
|
| 156 |
+
|
| 157 |
+
# Text tokens
|
| 158 |
+
tokens=th.tensor(
|
| 159 |
+
[tokens] * batch_size, device=device
|
| 160 |
+
),
|
| 161 |
+
mask=th.tensor(
|
| 162 |
+
[mask] * batch_size,
|
| 163 |
+
dtype=th.bool,
|
| 164 |
+
device=device,
|
| 165 |
+
),
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Sample from the base model.
|
| 169 |
+
model_up.del_cache()
|
| 170 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 171 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
| 172 |
+
model_up,
|
| 173 |
+
up_shape,
|
| 174 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 175 |
device=device,
|
| 176 |
+
clip_denoised=True,
|
| 177 |
+
progress=True,
|
| 178 |
+
model_kwargs=model_kwargs,
|
| 179 |
+
cond_fn=None,
|
| 180 |
+
)[:batch_size]
|
| 181 |
+
model_up.del_cache()
|
| 182 |
+
|
| 183 |
+
# Show the output
|
| 184 |
+
return up_samples
|
| 185 |
+
|
| 186 |
+
# sampling 64x64 images
|
| 187 |
+
samples = sample_64(prompts)
|
| 188 |
+
# show_images(samples)
|
| 189 |
+
|
| 190 |
+
# upsample from 64x64 to 256x256
|
| 191 |
+
upsamples = upsampling_256(prompts, samples)
|
| 192 |
+
# show_images(upsamples)
|
| 193 |
+
|
| 194 |
+
out_img = upsamples[0].permute(1, 2, 0)
|
| 195 |
+
out_img = (out_img + 1) / 2
|
| 196 |
+
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
| 197 |
+
out_img = out_img.numpy()
|
| 198 |
+
return out_img
|
| 199 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
# create model for CLEVR Objects
|
| 202 |
clevr_options = model_and_diffusion_defaults_for_clevr()
|
|
|
|
| 218 |
}
|
| 219 |
|
| 220 |
for key, val in flags.items():
|
| 221 |
+
clevr_options[key] = val
|
| 222 |
|
| 223 |
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
| 224 |
clevr_model.eval()
|
| 225 |
if has_cuda:
|
| 226 |
clevr_model.convert_to_fp16()
|
| 227 |
+
|
| 228 |
clevr_model.to(device)
|
| 229 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
| 230 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
| 231 |
|
| 232 |
+
|
| 233 |
def compose_clevr_objects(prompt, guidance_scale):
|
| 234 |
+
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
| 235 |
+
for x in prompt.split('|')]
|
| 236 |
+
coordinates += [[-1, -1]] # add unconditional score label
|
|
|
|
| 237 |
batch_size = 1
|
| 238 |
+
|
| 239 |
def model_fn(x_t, ts, **kwargs):
|
| 240 |
half = x_t[:1]
|
| 241 |
combined = th.cat([half] * kwargs['y'].size(0), dim=0)
|
|
|
|
| 247 |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 248 |
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
| 249 |
return th.cat([eps, rest], dim=1)
|
| 250 |
+
|
| 251 |
def sample(coordinates):
|
| 252 |
masks = [True] * (len(coordinates) - 1) + [False]
|
| 253 |
model_kwargs = dict(
|
|
|
|
| 256 |
)
|
| 257 |
samples = clevr_diffusion.p_sample_loop(
|
| 258 |
model_fn,
|
| 259 |
+
(len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]),
|
| 260 |
device=device,
|
| 261 |
clip_denoised=True,
|
| 262 |
progress=True,
|
| 263 |
model_kwargs=model_kwargs,
|
| 264 |
cond_fn=None,
|
| 265 |
)[:batch_size]
|
| 266 |
+
|
| 267 |
return samples
|
| 268 |
|
| 269 |
samples = sample(coordinates)
|
| 270 |
+
out_img = samples[0].permute(1, 2, 0)
|
| 271 |
+
out_img = (out_img + 1) / 2
|
| 272 |
out_img = (out_img.detach().cpu() * 255.).to(th.uint8)
|
| 273 |
out_img = out_img.numpy()
|
| 274 |
+
Image.fromarray(out_img).convert('RGB').save('test.png')
|
| 275 |
+
|
| 276 |
return out_img
|
| 277 |
|
| 278 |
|
|
|
|
| 282 |
else:
|
| 283 |
return compose_clevr_objects(prompt, guidance_scale)
|
| 284 |
|
| 285 |
+
|
| 286 |
examples_1 = 'a camel | a forest'
|
| 287 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
| 288 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
|
|
|
| 291 |
import gradio as gr
|
| 292 |
|
| 293 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
| 294 |
+
description = '<p>Demo for Composable Diffusion<ul><li>~30s per GLIDE example</li><li>~10s per CLEVR Object example</li>(<b>Note</b>: time is measured by per example if gpu is used, otherwise it will take quite a bit of time.)</ul></p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
|
| 295 |
|
| 296 |
+
iface = gr.Interface(compose, inputs=["text", gr.Radio(['GLIDE', 'CLEVR Objects'], type="value", label='version'), gr.Slider(1, 20)], outputs='image',
|
| 297 |
+
title=title, description=description, examples=examples)
|
| 298 |
|
| 299 |
iface.launch()
|