Spaces:
Runtime error
Runtime error
test of the first version of the code - zero-shot detection only
Browse files- .gitignore +2 -0
- README.md +3 -3
- app.py +59 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
.idea/
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: YOLO World
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: YOLO World
|
3 |
+
emoji: π₯
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.19.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import supervision as sv
|
6 |
+
from inference.models import YOLOWorld
|
7 |
+
|
8 |
+
MARKDOWN = """
|
9 |
+
# YOLO-World π
|
10 |
+
|
11 |
+
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and [Supervision](https://github.com/roboflow/supervision).
|
12 |
+
"""
|
13 |
+
|
14 |
+
MODEL = YOLOWorld(model_id="yolo_world/l")
|
15 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
16 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
17 |
+
|
18 |
+
|
19 |
+
def process_categories(categories: str) -> List[str]:
|
20 |
+
return [category.strip() for category in categories.split(',')]
|
21 |
+
|
22 |
+
|
23 |
+
def process_image(input_image: np.ndarray, categories: str) -> np.ndarray:
|
24 |
+
categories = process_categories(categories)
|
25 |
+
MODEL.set_classes(categories)
|
26 |
+
results = MODEL.infer(input_image, confidence=0.003)
|
27 |
+
detections = sv.Detections.from_inference(results).with_nms(0.1)
|
28 |
+
output_image = input_image.copy()
|
29 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
30 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
|
31 |
+
return output_image
|
32 |
+
|
33 |
+
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
gr.Markdown(MARKDOWN)
|
36 |
+
with gr.Row():
|
37 |
+
input_image_component = gr.Image(
|
38 |
+
type='numpy',
|
39 |
+
label='Input Image'
|
40 |
+
)
|
41 |
+
output_image_component = gr.Image(
|
42 |
+
type='numpy',
|
43 |
+
label='Output Image'
|
44 |
+
)
|
45 |
+
with gr.Row():
|
46 |
+
categories_text_component = gr.Textbox(
|
47 |
+
label='Categories',
|
48 |
+
placeholder='comma separated list of categories',
|
49 |
+
scale=5
|
50 |
+
)
|
51 |
+
submit_button_component = gr.Button('Submit', scale=1)
|
52 |
+
|
53 |
+
submit_button_component.click(
|
54 |
+
fn=process_image,
|
55 |
+
inputs=[input_image_component, categories_text_component],
|
56 |
+
outputs=output_image_component
|
57 |
+
)
|
58 |
+
|
59 |
+
demo.launch(debug=False, show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
inference-gpu[yolo-world]==0.9.12
|
2 |
+
supervision==0.19.0rc3
|
3 |
+
gradio==4.19.0
|