Spaces:
Running
Running
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb | |
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main | |
import gradio as gr | |
from openai import OpenAI | |
import os | |
ACCESS_TOKEN = os.getenv("myHFtoken") | |
print("Access token loaded.") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("Client initialized.") | |
SYSTEM_PROMPTS = { | |
"zh-HK": "用香港的廣東話(Cantonese)對話. No chatty. Answer in simple but accurate way.", | |
"zh-TW": "Chat by Traditional Chinese language of Taiwan (zh-TW). No chatty. Answer in simple but accurate way.", | |
"EN: General Assistant": "You are a helpful, respectful and honest assistant. Always provide accurate information and admit when you're not sure about something.", | |
"EN: Code Helper": "You are a programming assistant. Help users with coding questions, debugging, and best practices. Provide clear explanations and code examples when appropriate.", | |
"EN: Creative Writer": "You are a creative writing assistant. Help users with storytelling, character development, and creative writing techniques. Be imaginative and encouraging." | |
} | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
preset_prompt, | |
custom_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
model_name, | |
): | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt] | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Selected model: {model_name}") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
print(f"Added user message to context: {val[0]}") | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
print(f"Added assistant message to context: {val[1]}") | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
print("Sending request to OpenAI API.") | |
for message in client.chat.completions.create( | |
model=model_name, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
print(f"Received token: {token}") | |
response += token | |
yield response | |
print("Completed response generation.") | |
models = [ | |
"ngxson/MiniThinky-v2-1B-Llama-3.2", | |
"meta-llama/Llama-3.2-3B-Instruct", | |
"PowerInfer/SmallThinker-3B-Preview", | |
"NovaSky-AI/Sky-T1-32B-Preview", | |
"Qwen/QwQ-32B-Preview", | |
"Qwen/Qwen2.5-Coder-32B-Instruct", | |
"microsoft/Phi-3-mini-128k-instruct", | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Test") | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=models, | |
value=models[0], | |
label="Select Model:" | |
) | |
# Create the chat components separately | |
chatbot = gr.Chatbot(height=500) | |
msg = gr.Textbox( | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False | |
) | |
clear = gr.Button("Clear") | |
# Additional inputs | |
with gr.Accordion("Configuration", open=False): | |
preset_prompt = gr.Dropdown( | |
choices=list(SYSTEM_PROMPTS.keys()), | |
value=list(SYSTEM_PROMPTS.keys())[0], | |
label="Select System Prompt:" | |
) | |
custom_prompt = gr.Textbox( | |
value="", | |
label="Custom System Prompt (leaves blank to use preset):", | |
lines=2 | |
) | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=8192, | |
value=2048, | |
step=1, | |
label="Max new tokens:" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.3, | |
step=0.1, | |
label="Temperature:" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P:" | |
) | |
# Set up the chat functionality | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot( | |
history, | |
preset_prompt, | |
custom_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
model_name | |
): | |
history[-1][1] = "" | |
for character in respond( | |
history[-1][0], | |
history[:-1], | |
preset_prompt, | |
custom_prompt, | |
max_tokens, | |
temperature, | |
top_p, | |
model_name | |
): | |
history[-1][1] = character | |
yield history | |
msg.submit( | |
user, | |
[msg, chatbot], | |
[msg, chatbot], | |
queue=False | |
).then( | |
bot, | |
[chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown], | |
chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() | |