File size: 21,571 Bytes
afe5cdc
3ebf31b
5d5194a
afe5cdc
 
5d5194a
afe5cdc
 
 
 
 
 
 
 
3a1aea9
 
 
5d5194a
 
 
afe5cdc
 
 
 
 
 
 
 
 
5d5194a
afe5cdc
 
 
 
5d5194a
 
 
0c3ad13
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3ad13
3ebf31b
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0be0df
b7fa320
81b4cc3
 
5d5194a
 
81b4cc3
 
 
 
 
ee77a14
81b4cc3
ec4c704
81b4cc3
588136e
 
3a1aea9
588136e
 
 
 
 
 
 
 
 
 
5d5194a
ee77a14
588136e
ee77a14
5d5194a
81b4cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5194a
81b4cc3
 
 
 
 
 
 
 
 
 
5d5194a
81b4cc3
 
 
 
 
 
 
 
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3ad13
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee77a14
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bc0d7
5d5194a
 
 
 
 
 
 
 
 
540680a
afe5cdc
 
5d5194a
afe5cdc
24cd589
5d5194a
 
 
 
 
 
 
 
 
 
 
24cd589
ee77a14
2959df6
24cd589
2959df6
ee77a14
2959df6
 
24cd589
 
 
 
 
2959df6
24cd589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee77a14
24cd589
bf1ba0f
 
 
 
 
 
 
 
 
 
 
 
 
b75abe3
5d5194a
ee77a14
 
5d5194a
ee77a14
5d5194a
 
ec4c704
 
5d5194a
b75abe3
 
 
0c3ad13
b75abe3
0c3ad13
ec4c704
 
 
 
 
 
 
 
ee77a14
 
 
 
 
 
 
 
 
 
ec4c704
 
ee77a14
 
 
 
 
c17faf0
ee77a14
5d5194a
ec4c704
 
588136e
5d5194a
 
 
0c3ad13
5d5194a
2e9b6e3
 
 
0c3ad13
2e9b6e3
5d5194a
 
 
 
 
 
 
 
 
 
3ebf31b
5d5194a
 
 
 
 
 
 
 
 
 
0c3ad13
5d5194a
 
 
 
 
 
 
 
 
beb20dc
3ebf31b
5d5194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c544af
 
5d5194a
 
 
 
d55609e
c17faf0
 
5d5194a
 
ee77a14
 
 
 
5d5194a
ee77a14
5d5194a
ee77a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4c704
ee77a14
 
 
 
 
 
 
afe5cdc
 
5d5194a
81b4cc3
afe5cdc
5d5194a
afe5cdc
 
5d5194a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import gradio as gr
from gradio_litmodel3d import LitModel3D
import spaces

import os

import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
from Amodal3R.representations import Gaussian, MeshExtractResult
from Amodal3R.utils import render_utils, postprocessing_utils
from segment_anything import sam_model_registry, SamPredictor
from huggingface_hub import hf_hub_download
import cv2


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
      
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

def reset_image(predictor, img):
    predictor.set_image(img)
    original_img = img.copy()
    return predictor, original_img, "The models are ready.", []

def button_clickable(selected_points):
    if len(selected_points) > 0:
        return gr.Button.update(interactive=True)
    else:
        return gr.Button.update(interactive=False)

def run_sam(predictor, selected_points):
    if len(selected_points) == 0:
        return [], None
    input_points = [p for p in selected_points]
    input_labels = [1 for _ in range(len(selected_points))]
    masks, _, _ = predictor.predict(
        point_coords=np.array(input_points),
        point_labels=np.array(input_labels),
        multimask_output=False,
    )
    best_mask = masks[0].astype(np.uint8)
    # dilate
    if len(selected_points) > 1:
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
        best_mask = cv2.dilate(best_mask, kernel, iterations=1)
        best_mask = cv2.erode(best_mask, kernel, iterations=1)
    return best_mask

def apply_mask_overlay(image, mask, color=(255, 0, 0)):
    img_arr = image
    overlay = img_arr.copy()
    gray_color = np.array([200, 200, 200], dtype=np.uint8)
    non_mask = mask == 0
    overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
    contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(overlay, contours, -1, color, 2)
    return overlay

def segment_and_overlay(image, points, sam_predictor):
    visible_mask = run_sam(sam_predictor, points)
    overlaid = apply_mask_overlay(image, visible_mask * 255)
    return overlaid, visible_mask


@spaces.GPU
def image_to_3d(

    image: np.ndarray,

    mask: np.ndarray,

    seed: int,

    ss_guidance_strength: float,

    ss_sampling_steps: int,

    slat_guidance_strength: float,

    slat_sampling_steps: int,

    erode_kernel_size: int,

    req: gr.Request,

) -> Tuple[dict, str]:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    outputs = pipeline.run_multi_image(
        [image],
        [mask],
        seed=seed,
        formats=["gaussian", "mesh"],
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
        mode="stochastic",
        erode_kernel_size=erode_kernel_size,
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(

    state: dict,

    mesh_simplify: float,

    texture_size: int,

    req: gr.Request,

) -> tuple:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> tuple:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> tuple:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh

def get_sam_predictor():
    sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
    model_type = "vit_h"
    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    sam_predictor = SamPredictor(sam)
    return sam_predictor


def draw_points_on_image(image, point):
    image_with_points = image.copy()
    x, y = point
    color = (255, 0, 0)
    cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1)
    return image_with_points


def see_point(image, x, y):
    updated_image = draw_points_on_image(image, [x,y])
    return updated_image

def add_point(x, y, visible_points):
    if [x, y] not in visible_points:
        visible_points.append([x, y])
    return visible_points

def delete_point(visible_points):
    visible_points.pop()
    return visible_points


def clear_all_points(image):
    updated_image = image.copy()
    return updated_image

def see_visible_points(image, visible_points):
    updated_image = image.copy()
    for p in visible_points:
        cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
    return updated_image

def update_all_points(visible_points):
    text = f"Points: {visible_points}"
    visible_dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points]
    return text, gr.Dropdown(label="Select Point to Delete", choices=visible_dropdown_choices, value=None, interactive=True)

def delete_selected_visible(image, visible_points, selected_value):
    try:
        selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value)
    except ValueError:
        selected_index = None
    if selected_index is not None and 0 <= selected_index < len(visible_points):
        visible_points.pop(selected_index)
    updated_image = image.copy()
    for p in visible_points:
        cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
    updated_text, vis_dropdown = update_all_points(visible_points)
    return updated_image, visible_points, updated_text, vis_dropdown

def add_mask(mask, mask_list): 
    if len(mask_list) > 0:
        if np.array_equal(mask, mask_list[-1]):
            return mask_list
    mask_list.append(mask)
    return mask_list

def vis_mask(image, mask_list):
    updated_image = image.copy()
    combined_mask = np.zeros_like(updated_image[:, :, 0])
    for mask in mask_list:
        combined_mask = cv2.bitwise_or(combined_mask, mask)
    updated_image = apply_mask_overlay(updated_image, combined_mask)
    return updated_image

def delete_mask(mask_list):
    if len(mask_list) > 0:
        mask_list.pop()
    return mask_list

def check_combined_mask(image, visibility_mask, mask_list, scale=0.65):
    updated_image = image.copy()
    combined_mask = np.zeros_like(updated_image[:, :, 0])
    occluded_mask = np.zeros_like(updated_image[:, :, 0])
    if len(mask_list) == 0:
        combined_mask = visibility_mask
    else:
        for mask in mask_list:
            combined_mask = cv2.bitwise_or(combined_mask, mask)

    if len(mask_list) > 1:
        kernel = np.ones((5, 5), np.uint8)
        dilate_iterations = 1
        combined_mask = cv2.dilate(combined_mask, kernel, iterations=dilate_iterations)
        combined_mask = cv2.erode(combined_mask, kernel, iterations=dilate_iterations)
    
    masked_img = updated_image * combined_mask[:, :, None]
    occluded_mask[combined_mask == 1] = 127

    x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8))
    cropped_occluded_mask = (occluded_mask[y:y+h, x:x+w]).astype(np.uint8)
    cropped_img = masked_img[y:y+h, x:x+w]

    target_size = 512
    scale_factor = target_size / max(w, h)
    new_w = int(round(w * scale_factor * scale))
    new_h = int(round(h * scale_factor * scale))

    resized_occluded_mask = cv2.resize(cropped_occluded_mask.astype(np.uint8), (new_w, new_h), cv2.INTER_NEAREST)
    resized_img = cv2.resize(cropped_img, (new_w, new_h), cv2.INTER_NEAREST)

    final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype)
    final_occluded_mask = np.zeros((target_size, target_size), dtype=np.uint8)

    x_offset = (target_size - new_w) // 2
    y_offset = (target_size - new_h) // 2

    final_img[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_img
    final_occluded_mask[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_occluded_mask

    return final_img, final_occluded_mask



def get_seed(randomize_seed: bool, seed: int) -> int:
    """

    Get the random seed.

    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""

    ## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)          

    """)

    predictor = gr.State(value=get_sam_predictor())
    visible_points_state = gr.State(value=[])
    occlusion_points_state = gr.State(value=[])
    original_image = gr.State(value=None)
    visibility_mask = gr.State(value=None)
    visibility_mask_list = gr.State(value=[])

    occluded_mask = gr.State(value=None)
    output_buf = gr.State()


    with gr.Row():
        gr.Markdown("""

        ### Step 1 - Generate Visibility Mask.

        * Please wait for a few seconds after uploading the image. The 2D segmenter is getting ready.

        * Add the point prompts to indicate the target object. "Render Point", see the position of the point to be added. "Add Point", the point will be added to the list.

        * "Generate mask", see the segmented area corresponding to current point list. "Add mask", current mask will be added for 3D amodal completion.

        * The target object need to be put in the center of the image and the scale can be adjusted for better reconstruction.

        * Please click "Load Example Image" when using the provided example images.

        """)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="numpy", label='Input Occlusion Image', sources="upload", height=300)
            with gr.Row():
                apply_example_btn = gr.Button("Load Example Image")
                message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message")  # 用于显示提示信息
            with gr.Row():
                x_input = gr.Number(label="X Coordinate", value=0)
                y_input = gr.Number(label="Y Coordinate", value=0)
            with gr.Row():
                see_button = gr.Button("Render Point")
                add_button = gr.Button("Add Point")
            with gr.Row():
                clear_button = gr.Button("Clear Points")
                see_visible_button = gr.Button("Render Added Points")
            with gr.Row():
                # 新增文本框实时显示点列表
                points_text = gr.Textbox(label="Points List", interactive=False)
            with gr.Row():
                # 新增下拉菜单,用户可选择需要删除的点
                visible_points_dropdown = gr.Dropdown(label="Select Point to Delete", choices=[], value=None, interactive=True)
                delete_visible_button = gr.Button("Delete Selected Visible")
        with gr.Column():
            # 用于显示 SAM 分割结果
            visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300)
            with gr.Row():
                gen_vis_mask = gr.Button("Generate Mask")
                add_vis_mask = gr.Button("Add Mask")
            with gr.Row():
                render_vis_mask = gr.Button("Render Mask")
                undo_vis_mask = gr.Button("Undo Last Mask")
            vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
            with gr.Row():
                zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.68, step=0.1)
                check_visible_input = gr.Button("Generate Occluded Input")
    
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[input_image],
            fn=lambda x: x,
            outputs=[input_image],
            run_on_click=True,
            examples_per_page=12,
        )

    with gr.Row():
        gr.Markdown("""

        ### Step 2 - 3D Amodal Completion.

        * Different random seeds can be tried in "Generation Settings", if you think the results are not ideal.

        * The boundary of the segmentation may not be accurate, so here we provide the option to erode the visible area.

        * If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it.

        """)
    with gr.Row():
        with gr.Column():
            with gr.Accordion(label="Generation Settings", open=True):
                with gr.Row():
                    with gr.Column():
                        seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
                    with gr.Column():
                        erode_kernel_size = gr.Slider(0, 5, label="Erode Kernel Size", value=3, step=1)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
            generate_btn = gr.Button("Amodal 3D Reconstruction")
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB")
                extract_gs_btn = gr.Button("Extract Gaussian")
            gr.Markdown("""

                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*

                        """)
        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    

    # # Handlers
    demo.load(start_session)
    demo.unload(end_session)

    input_image.upload(
        reset_image,
        [predictor, input_image],
        [predictor, original_image, message, visible_points_state],
    )
    apply_example_btn.click(
        reset_image,
        inputs=[predictor, input_image],
        outputs=[predictor, original_image, message, visible_points_state]
    )
    see_button.click(
        see_point, 
        inputs=[original_image, x_input, y_input], 
        outputs=[input_image]
    )
    add_button.click(
        add_point, 
        inputs=[x_input, y_input, visible_points_state], 
        outputs=[visible_points_state]
    )
    
    clear_button.click(
        clear_all_points,
        inputs=[original_image],
        outputs=[input_image]
    )
    see_visible_button.click(
        see_visible_points,
        inputs=[input_image, visible_points_state],
        outputs=input_image
    )

    visible_points_state.change(
        update_all_points,
        inputs=[visible_points_state],
        outputs=[points_text, visible_points_dropdown]
    )
    delete_visible_button.click(
        delete_selected_visible,
        inputs=[input_image, visible_points_state, visible_points_dropdown],
        outputs=[input_image, visible_points_state, points_text, visible_points_dropdown]
    )

    gen_vis_mask.click(
        segment_and_overlay,
        inputs=[original_image, visible_points_state, predictor],
        outputs=[visible_mask, visibility_mask]
    )
    add_vis_mask.click(
        add_mask,
        inputs=[visibility_mask, visibility_mask_list],
        outputs=[visibility_mask_list]
    )
    render_vis_mask.click(
        vis_mask,
        inputs=[original_image, visibility_mask_list],
        outputs=[visible_mask]
    )
    undo_vis_mask.click(
        delete_mask,
        inputs=[visibility_mask_list],
        outputs=[visibility_mask_list]
    )

    check_visible_input.click(
        check_combined_mask,
        inputs=[original_image, visibility_mask, visibility_mask_list, zoom_scale],
        outputs=[vis_input, occluded_mask]
    )
    

    # 3D Amodal Reconstruction
    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, erode_kernel_size],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )


    
if __name__ == "__main__":
    pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
    except:
        pass
    demo.launch()