Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| import re | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import edge_tts | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| ) | |
| from transformers.image_utils import load_image | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load text-only model and tokenizer for chat generation | |
| model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| model.eval() | |
| # TTS Voices and processor for multimodal chat | |
| TTS_VOICES = [ | |
| "en-US-JennyNeural", # @tts1 | |
| "en-US-GuyNeural", # @tts2 | |
| ] | |
| MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_VL, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| # A helper function to convert text to speech via Edge TTS | |
| async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| return output_file | |
| def clean_chat_history(chat_history): | |
| cleaned = [] | |
| for msg in chat_history: | |
| if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
| cleaned.append(msg) | |
| return cleaned | |
| # Restricted words check (if any) | |
| bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
| bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
| default_negative = os.getenv("default_negative", "") | |
| def check_text(prompt, negative=""): | |
| for i in bad_words: | |
| if i in prompt: | |
| return True | |
| for i in bad_words_negative: | |
| if i in negative: | |
| return True | |
| return False | |
| # Use the same random seed function for both text and image generation | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| MAX_SEED = np.iinfo(np.int32).max | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| # Set dtype based on device: use half for CUDA, float32 otherwise. | |
| dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
| # Load image generation pipelines for the three model choices. | |
| if torch.cuda.is_available(): | |
| # Lightning 5 model | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False | |
| ).to(device) | |
| pipe.text_encoder = pipe.text_encoder.half() | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe.enable_model_cpu_offload() | |
| else: | |
| pipe.to(device) | |
| print("Loaded RealVisXL_V5.0_Lightning on Device!") | |
| if USE_TORCH_COMPILE: | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| print("Model RealVisXL_V5.0_Lightning Compiled!") | |
| # Lightning 4 model | |
| pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V4.0_Lightning", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe2.text_encoder = pipe2.text_encoder.half() | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe2.enable_model_cpu_offload() | |
| else: | |
| pipe2.to(device) | |
| print("Loaded RealVisXL_V4.0 on Device!") | |
| if USE_TORCH_COMPILE: | |
| pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) | |
| print("Model RealVisXL_V4.0 Compiled!") | |
| # Turbo v3 model | |
| pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V3.0_Turbo", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe3.text_encoder = pipe3.text_encoder.half() | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe3.enable_model_cpu_offload() | |
| else: | |
| pipe3.to(device) | |
| print("Loaded Animagine XL 4.0 on Device!") | |
| if USE_TORCH_COMPILE: | |
| pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True) | |
| print("Model Animagine XL 4.0 Compiled!") | |
| else: | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False | |
| ).to(device) | |
| pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V4.0_Lightning", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe3 = StableDiffusionXLPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V3.0_Turbo", | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| print("Running on CPU; models loaded in float32.") | |
| # Define available model choices and their mapping. | |
| DEFAULT_MODEL = "Lightning 5" | |
| MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"] | |
| models = { | |
| "Lightning 5": pipe, | |
| "Lightning 4": pipe2, | |
| "Turbo v3": pipe3 | |
| } | |
| def generate_image_grid(prompt: str, seed: int, grid_size: str, width: int, height: int, | |
| guidance_scale: float, randomize_seed: bool, model_choice: str): | |
| if check_text(prompt, ""): | |
| raise ValueError("Prompt contains restricted words.") | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Define supported grid sizes. | |
| grid_sizes = { | |
| "2x1": (2, 1), | |
| "1x2": (1, 2), | |
| "2x2": (2, 2), | |
| "1x1": (1, 1) | |
| } | |
| grid_size_tuple = grid_sizes.get(grid_size, (1, 1)) | |
| num_images = grid_size_tuple[0] * grid_size_tuple[1] | |
| options = { | |
| "prompt": prompt, | |
| "negative_prompt": default_negative, | |
| "width": width, | |
| "height": height, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": 30, | |
| "generator": generator, | |
| "num_images_per_prompt": num_images, | |
| "use_resolution_binning": True, | |
| "output_type": "pil", | |
| } | |
| if device.type == "cuda": | |
| torch.cuda.empty_cache() | |
| selected_pipe = models.get(model_choice, pipe) | |
| images = selected_pipe(**options).images | |
| # Create a grid image. | |
| grid_img = Image.new('RGB', (width * grid_size_tuple[0], height * grid_size_tuple[1])) | |
| for i, img in enumerate(images[:num_images]): | |
| grid_img.paste(img, ((i % grid_size_tuple[0]) * width, (i // grid_size_tuple[0]) * height)) | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| grid_img.save(unique_name) | |
| return [unique_name], seed | |
| # ----------------------------- | |
| # Main generate() Function | |
| # ----------------------------- | |
| def generate( | |
| input_dict: dict, | |
| chat_history: list[dict], | |
| max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| lower_text = text.lower().strip() | |
| # Check if the prompt is an image generation command using model flags. | |
| if (lower_text.startswith("@lightningv5") or | |
| lower_text.startswith("@lightningv4") or | |
| lower_text.startswith("@turbov3")): | |
| # Determine model choice based on flag. | |
| model_choice = None | |
| if "@lightningv5" in lower_text: | |
| model_choice = "Lightning 5" | |
| elif "@lightningv4" in lower_text: | |
| model_choice = "Lightning 4" | |
| elif "@turbov3" in lower_text: | |
| model_choice = "Turbo v3" | |
| # Parse grid size flag e.g. "@2x2" | |
| grid_match = re.search(r"@(\d+x\d+)", lower_text) | |
| grid_size = grid_match.group(1) if grid_match else "1x1" | |
| # Remove the model and grid flags from the prompt. | |
| prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE) | |
| prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE) | |
| prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE) | |
| prompt_clean = re.sub(r"@\d+x\d+", "", prompt_clean, flags=re.IGNORECASE) | |
| prompt_clean = prompt_clean.strip().strip('"') | |
| # Default parameters for image generation. | |
| width = 1024 | |
| height = 1024 | |
| guidance_scale = 6.0 | |
| seed_val = 0 | |
| randomize_seed = True | |
| use_resolution_binning = True | |
| yield "Generating image grid..." | |
| image_paths, used_seed = generate_image_grid( | |
| prompt_clean, | |
| seed_val, | |
| grid_size, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| model_choice, | |
| ) | |
| yield gr.Image(image_paths[0]) | |
| return | |
| # Otherwise, handle text/chat (and TTS) generation. | |
| tts_prefix = "@tts" | |
| is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
| voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
| if is_tts and voice_index: | |
| voice = TTS_VOICES[voice_index - 1] | |
| text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
| conversation = [{"role": "user", "content": text}] | |
| else: | |
| voice = None | |
| text = text.replace(tts_prefix, "").strip() | |
| conversation = clean_chat_history(chat_history) | |
| conversation.append({"role": "user", "content": text}) | |
| if files: | |
| images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield "Thinking..." | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generation_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_text in streamer: | |
| outputs.append(new_text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| yield final_response | |
| if is_tts and voice: | |
| output_file = asyncio.run(text_to_speech(final_response, voice)) | |
| yield gr.Audio(output_file, autoplay=True) | |
| DESCRIPTION = """ | |
| # IMAGINEO 4K ⚡ | |
| """ | |
| css = ''' | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| #duplicate-button { | |
| margin: auto; | |
| color: #fff; | |
| background: #1565c0; | |
| border-radius: 100vh; | |
| } | |
| ''' | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| ["@tts1 Who is Nikola Tesla, and why did he die?"], | |
| ['@lightningv5 @2x2 "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"'], | |
| ['@lightningv4 @1x1 "A serene landscape with mountains"'], | |
| ['@turbov3 @2x1 "Abstract art, colorful and vibrant"'], | |
| ["Write a Python function to check if a number is prime."], | |
| ["@tts2 What causes rainbows to form?"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description=DESCRIPTION, | |
| css=css, | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True) |