Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -268,7 +268,7 @@ if torch.cuda.is_available():
|
|
| 268 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 269 |
print("Model RealVisXL_V5.0_Lightning Compiled!")
|
| 270 |
|
| 271 |
-
# Load
|
| 272 |
pipe2 = StableDiffusionXLPipeline.from_pretrained(
|
| 273 |
"SG161222/RealVisXL_V4.0",
|
| 274 |
torch_dtype=dtype,
|
|
@@ -286,8 +286,27 @@ if torch.cuda.is_available():
|
|
| 286 |
if USE_TORCH_COMPILE:
|
| 287 |
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
| 288 |
print("Model RealVisXL_V4.0 Compiled!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
else:
|
| 290 |
-
# On CPU load
|
| 291 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 292 |
"SG161222/RealVisXL_V5.0_Lightning",
|
| 293 |
torch_dtype=dtype,
|
|
@@ -300,14 +319,21 @@ else:
|
|
| 300 |
use_safetensors=True,
|
| 301 |
add_watermarker=False,
|
| 302 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
print("Running on CPU; models loaded in float32.")
|
| 304 |
|
| 305 |
# A dictionary to easily choose the model based on selection.
|
| 306 |
DEFAULT_MODEL = "RealVisXL_V5.0_Lightning"
|
| 307 |
-
MODEL_CHOICES = [DEFAULT_MODEL, "RealVisXL_V4.0"]
|
| 308 |
models = {
|
| 309 |
"RealVisXL_V5.0_Lightning": pipe,
|
| 310 |
-
"RealVisXL_V4.0": pipe2
|
|
|
|
| 311 |
}
|
| 312 |
|
| 313 |
def save_image(img, path):
|
|
|
|
| 268 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 269 |
print("Model RealVisXL_V5.0_Lightning Compiled!")
|
| 270 |
|
| 271 |
+
# Load second model (RealVisXL_V4.0)
|
| 272 |
pipe2 = StableDiffusionXLPipeline.from_pretrained(
|
| 273 |
"SG161222/RealVisXL_V4.0",
|
| 274 |
torch_dtype=dtype,
|
|
|
|
| 286 |
if USE_TORCH_COMPILE:
|
| 287 |
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
| 288 |
print("Model RealVisXL_V4.0 Compiled!")
|
| 289 |
+
|
| 290 |
+
# Load third model (Animagine XL 4.0)
|
| 291 |
+
pipe3 = StableDiffusionXLPipeline.from_pretrained(
|
| 292 |
+
"cagliostrolab/animagine-xl-4.0",
|
| 293 |
+
torch_dtype=dtype,
|
| 294 |
+
use_safetensors=True,
|
| 295 |
+
add_watermarker=False,
|
| 296 |
+
).to(device)
|
| 297 |
+
pipe3.text_encoder = pipe3.text_encoder.half()
|
| 298 |
+
|
| 299 |
+
if ENABLE_CPU_OFFLOAD:
|
| 300 |
+
pipe3.enable_model_cpu_offload()
|
| 301 |
+
else:
|
| 302 |
+
pipe3.to(device)
|
| 303 |
+
print("Loaded Animagine XL 4.0 on Device!")
|
| 304 |
+
|
| 305 |
+
if USE_TORCH_COMPILE:
|
| 306 |
+
pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True)
|
| 307 |
+
print("Model Animagine XL 4.0 Compiled!")
|
| 308 |
else:
|
| 309 |
+
# On CPU, load all models in float32
|
| 310 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 311 |
"SG161222/RealVisXL_V5.0_Lightning",
|
| 312 |
torch_dtype=dtype,
|
|
|
|
| 319 |
use_safetensors=True,
|
| 320 |
add_watermarker=False,
|
| 321 |
).to(device)
|
| 322 |
+
pipe3 = StableDiffusionXLPipeline.from_pretrained(
|
| 323 |
+
"cagliostrolab/animagine-xl-4.0",
|
| 324 |
+
torch_dtype=dtype,
|
| 325 |
+
use_safetensors=True,
|
| 326 |
+
add_watermarker=False,
|
| 327 |
+
).to(device)
|
| 328 |
print("Running on CPU; models loaded in float32.")
|
| 329 |
|
| 330 |
# A dictionary to easily choose the model based on selection.
|
| 331 |
DEFAULT_MODEL = "RealVisXL_V5.0_Lightning"
|
| 332 |
+
MODEL_CHOICES = [DEFAULT_MODEL, "RealVisXL_V4.0", "Animagine XL 4.0"]
|
| 333 |
models = {
|
| 334 |
"RealVisXL_V5.0_Lightning": pipe,
|
| 335 |
+
"RealVisXL_V4.0": pipe2,
|
| 336 |
+
"Animagine XL 4.0": pipe3
|
| 337 |
}
|
| 338 |
|
| 339 |
def save_image(img, path):
|