Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	
		Boning c
		
	commited on
		
		
					Update latest_stable.txt
Browse files- latest_stable.txt +92 -0
    	
        latest_stable.txt
    CHANGED
    
    | @@ -0,0 +1,92 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            # Model definitions
         | 
| 6 | 
            +
            PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A1"
         | 
| 7 | 
            +
            FALLBACK_MODEL = "Smilyai-labs/Sam-reason-S2.1"
         | 
| 8 | 
            +
            USAGE_LIMIT = 10
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Globals for models and tokenizers
         | 
| 13 | 
            +
            primary_model, primary_tokenizer = None, None
         | 
| 14 | 
            +
            fallback_model, fallback_tokenizer = None, None
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # IP-based usage tracking
         | 
| 17 | 
            +
            usage_counts = {}
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            def load_models():
         | 
| 20 | 
            +
                global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
         | 
| 21 | 
            +
                primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL)
         | 
| 22 | 
            +
                primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL).to(device).eval()
         | 
| 23 | 
            +
                fallback_tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL)
         | 
| 24 | 
            +
                fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL).to(device).eval()
         | 
| 25 | 
            +
                return f"Models loaded: {PRIMARY_MODEL} + fallback {FALLBACK_MODEL}"
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.7, top_p=0.9):
         | 
| 28 | 
            +
                model = fallback_model if use_fallback else primary_model
         | 
| 29 | 
            +
                tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
         | 
| 30 | 
            +
                input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
         | 
| 31 | 
            +
                generated = input_ids
         | 
| 32 | 
            +
                output_text = tokenizer.decode(input_ids[0])
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                for _ in range(max_length):
         | 
| 35 | 
            +
                    outputs = model(generated)
         | 
| 36 | 
            +
                    logits = outputs.logits[:, -1, :] / temperature
         | 
| 37 | 
            +
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
         | 
| 38 | 
            +
                    probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
         | 
| 39 | 
            +
                    mask = probs > top_p
         | 
| 40 | 
            +
                    mask[..., 1:] = mask[..., :-1].clone()
         | 
| 41 | 
            +
                    mask[..., 0] = 0
         | 
| 42 | 
            +
                    filtered = logits.clone()
         | 
| 43 | 
            +
                    filtered[:, sorted_indices[mask]] = -float("Inf")
         | 
| 44 | 
            +
                    next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
         | 
| 45 | 
            +
                    generated = torch.cat([generated, next_token], dim=-1)
         | 
| 46 | 
            +
                    new_text = tokenizer.decode(next_token[0])
         | 
| 47 | 
            +
                    output_text += new_text
         | 
| 48 | 
            +
                    yield output_text
         | 
| 49 | 
            +
                    if next_token.item() == tokenizer.eos_token_id:
         | 
| 50 | 
            +
                        break
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            def respond(msg, history, reasoning_enabled, request: gr.Request):
         | 
| 53 | 
            +
                ip = request.client.host if request else "unknown"
         | 
| 54 | 
            +
                usage_counts[ip] = usage_counts.get(ip, 0) + 1
         | 
| 55 | 
            +
                use_fallback = usage_counts[ip] > USAGE_LIMIT
         | 
| 56 | 
            +
                model_used = "A1" if not use_fallback else "Fallback S2.1"
         | 
| 57 | 
            +
                prefix = "/think " if reasoning_enabled else "/no_think "
         | 
| 58 | 
            +
                prompt = prefix + msg.strip()
         | 
| 59 | 
            +
                history = history + [[msg, ""]]
         | 
| 60 | 
            +
                for output in generate_stream(prompt, use_fallback):
         | 
| 61 | 
            +
                    history[-1][1] = output + f" ({model_used})"
         | 
| 62 | 
            +
                    yield history, history
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            def clear_chat():
         | 
| 65 | 
            +
                return [], []
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            with gr.Blocks() as demo:
         | 
| 68 | 
            +
                gr.Markdown("# 🤖 SmilyAI Reasoning Chat • Token-by-Token + IP Usage Limits")
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                model_status = gr.Textbox(label="Model Load Status", interactive=False)
         | 
| 71 | 
            +
                chat_box = gr.Chatbot(label="Chat", type="tuples")
         | 
| 72 | 
            +
                chat_state = gr.State([])
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                with gr.Row():
         | 
| 75 | 
            +
                    user_input = gr.Textbox(placeholder="Your message here...", show_label=False, scale=6)
         | 
| 76 | 
            +
                    reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
         | 
| 77 | 
            +
                    send_btn = gr.Button("Send", scale=1)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                clear_btn = gr.Button("Clear Chat")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                model_status.value = load_models()
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                send_btn.click(
         | 
| 84 | 
            +
                    respond,
         | 
| 85 | 
            +
                    inputs=[user_input, chat_state, reason_toggle],
         | 
| 86 | 
            +
                    outputs=[chat_box, chat_state]
         | 
| 87 | 
            +
                )
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                clear_btn.click(fn=clear_chat, inputs=[], outputs=[chat_box, chat_state])
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            demo.queue()
         | 
| 92 | 
            +
            demo.launch()
         | 
