Spaces:
Runtime error
Runtime error
Commit
Β·
5532825
1
Parent(s):
3b90025
fix setting contants upon launch
Browse files- README.md +4 -3
- app.py +7 -3
- examples/argilla_deployment.py +2 -2
- examples/enforce_mapgie_template copy.py +2 -2
- examples/ollama_local.py +2 -2
- examples/openai_local.py +2 -2
- src/synthetic_dataset_generator/__init__.py +17 -159
- src/synthetic_dataset_generator/_distiset.py +113 -0
- src/synthetic_dataset_generator/_inference_endpoints.py +58 -0
- src/synthetic_dataset_generator/app.py +0 -4
README.md
CHANGED
|
@@ -67,9 +67,9 @@ pip install synthetic-dataset-generator
|
|
| 67 |
### Quickstart
|
| 68 |
|
| 69 |
```python
|
| 70 |
-
from synthetic_dataset_generator
|
| 71 |
|
| 72 |
-
|
| 73 |
```
|
| 74 |
|
| 75 |
### Environment Variables
|
|
@@ -87,7 +87,8 @@ Optionally, you can use different models and APIs.
|
|
| 87 |
- `BASE_URL`: The base URL for any OpenAI compatible API, e.g. `https://api-inference.huggingface.co/v1/`, `https://api.openai.com/v1/`.
|
| 88 |
- `MODEL`: The model to use for generating the dataset, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`, `gpt-4o`.
|
| 89 |
- `API_KEY`: The API key to use for the generation API, e.g. `hf_...`, `sk-...`. If not provided, it will default to the provided `HF_TOKEN` environment variable.
|
| 90 |
-
- `MAGPIE_PRE_QUERY_TEMPLATE`: Enforce setting the pre-query template for Magpie
|
|
|
|
| 91 |
|
| 92 |
Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables:
|
| 93 |
|
|
|
|
| 67 |
### Quickstart
|
| 68 |
|
| 69 |
```python
|
| 70 |
+
from synthetic_dataset_generator import launch
|
| 71 |
|
| 72 |
+
launch()
|
| 73 |
```
|
| 74 |
|
| 75 |
### Environment Variables
|
|
|
|
| 87 |
- `BASE_URL`: The base URL for any OpenAI compatible API, e.g. `https://api-inference.huggingface.co/v1/`, `https://api.openai.com/v1/`.
|
| 88 |
- `MODEL`: The model to use for generating the dataset, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`, `gpt-4o`.
|
| 89 |
- `API_KEY`: The API key to use for the generation API, e.g. `hf_...`, `sk-...`. If not provided, it will default to the provided `HF_TOKEN` environment variable.
|
| 90 |
+
- `MAGPIE_PRE_QUERY_TEMPLATE`: Enforce setting the pre-query template for Magpie. Llama3 and Qwen2 are supported out of the box and will use `"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"` and `"<|im_start|>user\n"` respectively. For other models, you can pass a custom pre-query template string.
|
| 91 |
+
|
| 92 |
|
| 93 |
Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables:
|
| 94 |
|
app.py
CHANGED
|
@@ -1,4 +1,8 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
|
| 3 |
+
from synthetic_dataset_generator import launch
|
| 4 |
+
|
| 5 |
+
os.environ["BASE_URL"] = "http://localhost:11434"
|
| 6 |
+
os.environ["MODEL"] = "llama3.1"
|
| 7 |
+
|
| 8 |
+
launch()
|
examples/argilla_deployment.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
from synthetic_dataset_generator
|
| 5 |
|
| 6 |
# Follow https://docs.argilla.io/latest/getting_started/quickstart/ to get your Argilla API key and URL
|
| 7 |
os.environ["ARGILLA_API_URL"] = "https://[your-owner-name]-[your_space_name].hf.space"
|
| 8 |
os.environ["ARGILLA_API_KEY"] = "my_api_key"
|
| 9 |
|
| 10 |
-
|
|
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
from synthetic_dataset_generator import launch
|
| 5 |
|
| 6 |
# Follow https://docs.argilla.io/latest/getting_started/quickstart/ to get your Argilla API key and URL
|
| 7 |
os.environ["ARGILLA_API_URL"] = "https://[your-owner-name]-[your_space_name].hf.space"
|
| 8 |
os.environ["ARGILLA_API_KEY"] = "my_api_key"
|
| 9 |
|
| 10 |
+
launch()
|
examples/enforce_mapgie_template copy.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
from synthetic_dataset_generator
|
| 5 |
|
| 6 |
os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3"
|
| 7 |
os.environ["MODEL"] = "my_custom_model_trained_on_llama3"
|
| 8 |
|
| 9 |
-
|
|
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
from synthetic_dataset_generator import launch
|
| 5 |
|
| 6 |
os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3"
|
| 7 |
os.environ["MODEL"] = "my_custom_model_trained_on_llama3"
|
| 8 |
|
| 9 |
+
launch()
|
examples/ollama_local.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
from synthetic_dataset_generator
|
| 5 |
|
| 6 |
assert os.getenv("HF_TOKEN")
|
| 7 |
os.environ["BASE_URL"] = "http://127.0.0.1:11434/v1/"
|
| 8 |
os.environ["MODEL"] = "llama3.1"
|
| 9 |
|
| 10 |
-
|
|
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
from synthetic_dataset_generator import launch
|
| 5 |
|
| 6 |
assert os.getenv("HF_TOKEN")
|
| 7 |
os.environ["BASE_URL"] = "http://127.0.0.1:11434/v1/"
|
| 8 |
os.environ["MODEL"] = "llama3.1"
|
| 9 |
|
| 10 |
+
launch()
|
examples/openai_local.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
from synthetic_dataset_generator
|
| 5 |
|
| 6 |
assert os.getenv("HF_TOKEN")
|
| 7 |
os.environ["BASE_URL"] = "https://api.openai.com/v1/"
|
| 8 |
os.environ["API_KEY"] = os.getenv("OPENAI_API_KEY")
|
| 9 |
os.environ["MODEL"] = "gpt-4o"
|
| 10 |
|
| 11 |
-
|
|
|
|
| 1 |
# pip install synthetic-dataset-generator
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
from synthetic_dataset_generator import launch
|
| 5 |
|
| 6 |
assert os.getenv("HF_TOKEN")
|
| 7 |
os.environ["BASE_URL"] = "https://api.openai.com/v1/"
|
| 8 |
os.environ["API_KEY"] = os.getenv("OPENAI_API_KEY")
|
| 9 |
os.environ["MODEL"] = "gpt-4o"
|
| 10 |
|
| 11 |
+
launch()
|
src/synthetic_dataset_generator/__init__.py
CHANGED
|
@@ -1,166 +1,24 @@
|
|
| 1 |
-
import
|
| 2 |
-
from typing import Optional
|
| 3 |
|
| 4 |
-
import
|
| 5 |
-
import distilabel.distiset
|
| 6 |
-
from distilabel.llms import InferenceEndpointsLLM
|
| 7 |
-
from distilabel.utils.card.dataset_card import (
|
| 8 |
-
DistilabelDatasetCard,
|
| 9 |
-
size_categories_parser,
|
| 10 |
-
)
|
| 11 |
-
from huggingface_hub import DatasetCardData, HfApi
|
| 12 |
-
from pydantic import (
|
| 13 |
-
ValidationError,
|
| 14 |
-
model_validator,
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class CustomInferenceEndpointsLLM(InferenceEndpointsLLM):
|
| 19 |
-
@model_validator(mode="after") # type: ignore
|
| 20 |
-
def only_one_of_model_id_endpoint_name_or_base_url_provided(
|
| 21 |
-
self,
|
| 22 |
-
) -> "InferenceEndpointsLLM":
|
| 23 |
-
"""Validates that only one of `model_id` or `endpoint_name` is provided; and if `base_url` is also
|
| 24 |
-
provided, a warning will be shown informing the user that the provided `base_url` will be ignored in
|
| 25 |
-
favour of the dynamically calculated one.."""
|
| 26 |
-
|
| 27 |
-
if self.base_url and (self.model_id or self.endpoint_name):
|
| 28 |
-
warnings.warn( # type: ignore
|
| 29 |
-
f"Since the `base_url={self.base_url}` is available and either one of `model_id`"
|
| 30 |
-
" or `endpoint_name` is also provided, the `base_url` will either be ignored"
|
| 31 |
-
" or overwritten with the one generated from either of those args, for serverless"
|
| 32 |
-
" or dedicated inference endpoints, respectively."
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
if self.use_magpie_template and self.tokenizer_id is None:
|
| 36 |
-
raise ValueError(
|
| 37 |
-
"`use_magpie_template` cannot be `True` if `tokenizer_id` is `None`. Please,"
|
| 38 |
-
" set a `tokenizer_id` and try again."
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
if (
|
| 42 |
-
self.model_id
|
| 43 |
-
and self.tokenizer_id is None
|
| 44 |
-
and self.structured_output is not None
|
| 45 |
-
):
|
| 46 |
-
self.tokenizer_id = self.model_id
|
| 47 |
-
|
| 48 |
-
if self.base_url and not (self.model_id or self.endpoint_name):
|
| 49 |
-
return self
|
| 50 |
-
|
| 51 |
-
if self.model_id and not self.endpoint_name:
|
| 52 |
-
return self
|
| 53 |
-
|
| 54 |
-
if self.endpoint_name and not self.model_id:
|
| 55 |
-
return self
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
| 65 |
-
def _generate_card(
|
| 66 |
-
self,
|
| 67 |
-
repo_id: str,
|
| 68 |
-
token: str,
|
| 69 |
-
include_script: bool = False,
|
| 70 |
-
filename_py: Optional[str] = None,
|
| 71 |
-
) -> None:
|
| 72 |
-
"""Generates a dataset card and pushes it to the Hugging Face Hub, and
|
| 73 |
-
if the `pipeline.yaml` path is available in the `Distiset`, uploads that
|
| 74 |
-
to the same repository.
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
repo_id: The ID of the repository to push to, from the `push_to_hub` method.
|
| 78 |
-
token: The token to authenticate with the Hugging Face Hub, from the `push_to_hub` method.
|
| 79 |
-
include_script: Whether to upload the script to the hugging face repository.
|
| 80 |
-
filename_py: The name of the script. If `include_script` is True, the script will
|
| 81 |
-
be uploaded to the repository using this name, otherwise it won't be used.
|
| 82 |
-
"""
|
| 83 |
-
card = self._get_card(
|
| 84 |
-
repo_id=repo_id,
|
| 85 |
-
token=token,
|
| 86 |
-
include_script=include_script,
|
| 87 |
-
filename_py=filename_py,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
card.push_to_hub(
|
| 91 |
-
repo_id,
|
| 92 |
-
repo_type="dataset",
|
| 93 |
-
token=token,
|
| 94 |
-
)
|
| 95 |
-
if self.pipeline_path:
|
| 96 |
-
# If the pipeline.yaml is available, upload it to the Hugging Face Hub as well.
|
| 97 |
-
HfApi().upload_file(
|
| 98 |
-
path_or_fileobj=self.pipeline_path,
|
| 99 |
-
path_in_repo=distilabel.distiset.PIPELINE_CONFIG_FILENAME,
|
| 100 |
-
repo_id=repo_id,
|
| 101 |
-
repo_type="dataset",
|
| 102 |
-
token=token,
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
def _get_card(
|
| 106 |
-
self,
|
| 107 |
-
repo_id: str,
|
| 108 |
-
token: Optional[str] = None,
|
| 109 |
-
include_script: bool = False,
|
| 110 |
-
filename_py: Optional[str] = None,
|
| 111 |
-
) -> DistilabelDatasetCard:
|
| 112 |
-
"""Generates the dataset card for the `Distiset`.
|
| 113 |
-
|
| 114 |
-
Note:
|
| 115 |
-
If `repo_id` and `token` are provided, it will extract the metadata from the README.md file
|
| 116 |
-
on the hub.
|
| 117 |
-
|
| 118 |
-
Args:
|
| 119 |
-
repo_id: Name of the repository to push to, or the path for the distiset if saved to disk.
|
| 120 |
-
token: The token to authenticate with the Hugging Face Hub.
|
| 121 |
-
We assume that if it's provided, the dataset will be in the Hugging Face Hub,
|
| 122 |
-
so the README metadata will be extracted from there.
|
| 123 |
-
include_script: Whether to upload the script to the hugging face repository.
|
| 124 |
-
filename_py: The name of the script. If `include_script` is True, the script will
|
| 125 |
-
be uploaded to the repository using this name, otherwise it won't be used.
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
The dataset card for the `Distiset`.
|
| 129 |
-
"""
|
| 130 |
-
sample_records = {}
|
| 131 |
-
for name, dataset in self.items():
|
| 132 |
-
sample_records[name] = (
|
| 133 |
-
dataset[0] if not isinstance(dataset, dict) else dataset["train"][0]
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
readme_metadata = {}
|
| 137 |
-
if repo_id and token:
|
| 138 |
-
readme_metadata = self._extract_readme_metadata(repo_id, token)
|
| 139 |
|
| 140 |
-
metadata = {
|
| 141 |
-
**readme_metadata,
|
| 142 |
-
"size_categories": size_categories_parser(
|
| 143 |
-
max(len(dataset) for dataset in self.values())
|
| 144 |
-
),
|
| 145 |
-
"tags": [
|
| 146 |
-
"synthetic",
|
| 147 |
-
"distilabel",
|
| 148 |
-
"rlaif",
|
| 149 |
-
"datacraft",
|
| 150 |
-
],
|
| 151 |
-
}
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
references=self.citations,
|
| 160 |
-
)
|
| 161 |
|
| 162 |
-
|
| 163 |
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
| 1 |
+
import inspect
|
|
|
|
| 2 |
|
| 3 |
+
from gradio import TabbedInterface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from synthetic_dataset_generator import ( # noqa
|
| 6 |
+
_distiset,
|
| 7 |
+
_inference_client,
|
| 8 |
+
_inference_endpoints,
|
| 9 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def launch(*args, **kwargs):
|
| 13 |
+
"""Launch the synthetic dataset generator.
|
| 14 |
+
Based on the `TabbedInterface` from Gradio.
|
| 15 |
+
Parameters: https://www.gradio.app/docs/gradio/tabbedinterface
|
| 16 |
+
"""
|
| 17 |
+
from synthetic_dataset_generator.app import demo
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
return demo.launch(*args, **kwargs)
|
| 20 |
|
| 21 |
|
| 22 |
+
launch.__doc__ = TabbedInterface.launch.__doc__
|
| 23 |
+
launch.__signature__ = inspect.signature(TabbedInterface.launch)
|
| 24 |
+
launch.__annotations__ = TabbedInterface.launch.__annotations__
|
src/synthetic_dataset_generator/_distiset.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import distilabel
|
| 4 |
+
import distilabel.distiset
|
| 5 |
+
from distilabel.utils.card.dataset_card import (
|
| 6 |
+
DistilabelDatasetCard,
|
| 7 |
+
size_categories_parser,
|
| 8 |
+
)
|
| 9 |
+
from huggingface_hub import DatasetCardData, HfApi
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset):
|
| 13 |
+
def _generate_card(
|
| 14 |
+
self,
|
| 15 |
+
repo_id: str,
|
| 16 |
+
token: str,
|
| 17 |
+
include_script: bool = False,
|
| 18 |
+
filename_py: Optional[str] = None,
|
| 19 |
+
) -> None:
|
| 20 |
+
"""Generates a dataset card and pushes it to the Hugging Face Hub, and
|
| 21 |
+
if the `pipeline.yaml` path is available in the `Distiset`, uploads that
|
| 22 |
+
to the same repository.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
repo_id: The ID of the repository to push to, from the `push_to_hub` method.
|
| 26 |
+
token: The token to authenticate with the Hugging Face Hub, from the `push_to_hub` method.
|
| 27 |
+
include_script: Whether to upload the script to the hugging face repository.
|
| 28 |
+
filename_py: The name of the script. If `include_script` is True, the script will
|
| 29 |
+
be uploaded to the repository using this name, otherwise it won't be used.
|
| 30 |
+
"""
|
| 31 |
+
card = self._get_card(
|
| 32 |
+
repo_id=repo_id,
|
| 33 |
+
token=token,
|
| 34 |
+
include_script=include_script,
|
| 35 |
+
filename_py=filename_py,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
card.push_to_hub(
|
| 39 |
+
repo_id,
|
| 40 |
+
repo_type="dataset",
|
| 41 |
+
token=token,
|
| 42 |
+
)
|
| 43 |
+
if self.pipeline_path:
|
| 44 |
+
# If the pipeline.yaml is available, upload it to the Hugging Face Hub as well.
|
| 45 |
+
HfApi().upload_file(
|
| 46 |
+
path_or_fileobj=self.pipeline_path,
|
| 47 |
+
path_in_repo=distilabel.distiset.PIPELINE_CONFIG_FILENAME,
|
| 48 |
+
repo_id=repo_id,
|
| 49 |
+
repo_type="dataset",
|
| 50 |
+
token=token,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def _get_card(
|
| 54 |
+
self,
|
| 55 |
+
repo_id: str,
|
| 56 |
+
token: Optional[str] = None,
|
| 57 |
+
include_script: bool = False,
|
| 58 |
+
filename_py: Optional[str] = None,
|
| 59 |
+
) -> DistilabelDatasetCard:
|
| 60 |
+
"""Generates the dataset card for the `Distiset`.
|
| 61 |
+
|
| 62 |
+
Note:
|
| 63 |
+
If `repo_id` and `token` are provided, it will extract the metadata from the README.md file
|
| 64 |
+
on the hub.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
repo_id: Name of the repository to push to, or the path for the distiset if saved to disk.
|
| 68 |
+
token: The token to authenticate with the Hugging Face Hub.
|
| 69 |
+
We assume that if it's provided, the dataset will be in the Hugging Face Hub,
|
| 70 |
+
so the README metadata will be extracted from there.
|
| 71 |
+
include_script: Whether to upload the script to the hugging face repository.
|
| 72 |
+
filename_py: The name of the script. If `include_script` is True, the script will
|
| 73 |
+
be uploaded to the repository using this name, otherwise it won't be used.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
The dataset card for the `Distiset`.
|
| 77 |
+
"""
|
| 78 |
+
sample_records = {}
|
| 79 |
+
for name, dataset in self.items():
|
| 80 |
+
sample_records[name] = (
|
| 81 |
+
dataset[0] if not isinstance(dataset, dict) else dataset["train"][0]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
readme_metadata = {}
|
| 85 |
+
if repo_id and token:
|
| 86 |
+
readme_metadata = self._extract_readme_metadata(repo_id, token)
|
| 87 |
+
|
| 88 |
+
metadata = {
|
| 89 |
+
**readme_metadata,
|
| 90 |
+
"size_categories": size_categories_parser(
|
| 91 |
+
max(len(dataset) for dataset in self.values())
|
| 92 |
+
),
|
| 93 |
+
"tags": [
|
| 94 |
+
"synthetic",
|
| 95 |
+
"distilabel",
|
| 96 |
+
"rlaif",
|
| 97 |
+
"datacraft",
|
| 98 |
+
],
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
card = DistilabelDatasetCard.from_template(
|
| 102 |
+
card_data=DatasetCardData(**metadata),
|
| 103 |
+
repo_id=repo_id,
|
| 104 |
+
sample_records=sample_records,
|
| 105 |
+
include_script=include_script,
|
| 106 |
+
filename_py=filename_py,
|
| 107 |
+
references=self.citations,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return card
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
distilabel.distiset.Distiset = CustomDistisetWithAdditionalTag
|
src/synthetic_dataset_generator/_inference_endpoints.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
|
| 3 |
+
import distilabel
|
| 4 |
+
import distilabel.distiset
|
| 5 |
+
from distilabel.llms import InferenceEndpointsLLM
|
| 6 |
+
from pydantic import (
|
| 7 |
+
ValidationError,
|
| 8 |
+
model_validator,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class CustomInferenceEndpointsLLM(InferenceEndpointsLLM):
|
| 13 |
+
@model_validator(mode="after") # type: ignore
|
| 14 |
+
def only_one_of_model_id_endpoint_name_or_base_url_provided(
|
| 15 |
+
self,
|
| 16 |
+
) -> "InferenceEndpointsLLM":
|
| 17 |
+
"""Validates that only one of `model_id` or `endpoint_name` is provided; and if `base_url` is also
|
| 18 |
+
provided, a warning will be shown informing the user that the provided `base_url` will be ignored in
|
| 19 |
+
favour of the dynamically calculated one.."""
|
| 20 |
+
|
| 21 |
+
if self.base_url and (self.model_id or self.endpoint_name):
|
| 22 |
+
warnings.warn( # type: ignore
|
| 23 |
+
f"Since the `base_url={self.base_url}` is available and either one of `model_id`"
|
| 24 |
+
" or `endpoint_name` is also provided, the `base_url` will either be ignored"
|
| 25 |
+
" or overwritten with the one generated from either of those args, for serverless"
|
| 26 |
+
" or dedicated inference endpoints, respectively."
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
if self.use_magpie_template and self.tokenizer_id is None:
|
| 30 |
+
raise ValueError(
|
| 31 |
+
"`use_magpie_template` cannot be `True` if `tokenizer_id` is `None`. Please,"
|
| 32 |
+
" set a `tokenizer_id` and try again."
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
if (
|
| 36 |
+
self.model_id
|
| 37 |
+
and self.tokenizer_id is None
|
| 38 |
+
and self.structured_output is not None
|
| 39 |
+
):
|
| 40 |
+
self.tokenizer_id = self.model_id
|
| 41 |
+
|
| 42 |
+
if self.base_url and not (self.model_id or self.endpoint_name):
|
| 43 |
+
return self
|
| 44 |
+
|
| 45 |
+
if self.model_id and not self.endpoint_name:
|
| 46 |
+
return self
|
| 47 |
+
|
| 48 |
+
if self.endpoint_name and not self.model_id:
|
| 49 |
+
return self
|
| 50 |
+
|
| 51 |
+
raise ValidationError(
|
| 52 |
+
f"Only one of `model_id` or `endpoint_name` must be provided. If `base_url` is"
|
| 53 |
+
f" provided too, it will be overwritten instead. Found `model_id`={self.model_id},"
|
| 54 |
+
f" `endpoint_name`={self.endpoint_name}, and `base_url`={self.base_url}."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
distilabel.llms.InferenceEndpointsLLM = CustomInferenceEndpointsLLM
|
src/synthetic_dataset_generator/app.py
CHANGED
|
@@ -28,7 +28,3 @@ demo = TabbedInterface(
|
|
| 28 |
title=image,
|
| 29 |
theme=theme,
|
| 30 |
)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
if __name__ == "__main__":
|
| 34 |
-
demo.launch()
|
|
|
|
| 28 |
title=image,
|
| 29 |
theme=theme,
|
| 30 |
)
|
|
|
|
|
|
|
|
|
|
|
|