Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Query, File, UploadFile
|
| 2 |
+
from fastapi.responses import FileResponse
|
| 3 |
+
import torch
|
| 4 |
+
from diffusion import Diffusion
|
| 5 |
+
from utils import get_id_frame, get_audio_emb, save_video
|
| 6 |
+
import shutil
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
@app.post("/generate_video/")
|
| 12 |
+
async def generate_video(
|
| 13 |
+
id_frame_file: UploadFile = File(...),
|
| 14 |
+
audio_file: UploadFile = File(...),
|
| 15 |
+
gpu: bool = Query(False, description="Use GPU if available"),
|
| 16 |
+
id_frame_random: bool = Query(False, description="Pick id_frame randomly from video"),
|
| 17 |
+
inference_steps: int = Query(100, description="Number of inference diffusion steps"),
|
| 18 |
+
output: str = Query("output.mp4", description="Path to save the output video")
|
| 19 |
+
):
|
| 20 |
+
device = 'cuda' if gpu and torch.cuda.is_available() else 'cpu'
|
| 21 |
+
|
| 22 |
+
print('Loading model...')
|
| 23 |
+
# Load your checkpoint here
|
| 24 |
+
unet = torch.jit.load("your_checkpoint_path_here")
|
| 25 |
+
|
| 26 |
+
# Replace these arguments with the ones from your original args
|
| 27 |
+
diffusion_args = {
|
| 28 |
+
"in_channels": 3,
|
| 29 |
+
"image_size": 128,
|
| 30 |
+
"out_channels": 6,
|
| 31 |
+
"n_timesteps": 1000,
|
| 32 |
+
}
|
| 33 |
+
diffusion = Diffusion(unet, device, **diffusion_args).to(device)
|
| 34 |
+
diffusion.space(inference_steps)
|
| 35 |
+
|
| 36 |
+
# Save uploaded files to disk
|
| 37 |
+
id_frame_path = Path("temp_id_frame.jpg")
|
| 38 |
+
audio_path = Path("temp_audio.mp3")
|
| 39 |
+
with id_frame_path.open("wb") as buffer:
|
| 40 |
+
shutil.copyfileobj(id_frame_file.file, buffer)
|
| 41 |
+
|
| 42 |
+
with audio_path.open("wb") as buffer:
|
| 43 |
+
shutil.copyfileobj(audio_file.file, buffer)
|
| 44 |
+
|
| 45 |
+
id_frame = get_id_frame(str(id_frame_path), random=id_frame_random, resize=diffusion_args["image_size"]).to(device)
|
| 46 |
+
audio, audio_emb = get_audio_emb(str(audio_path), "your_encoder_checkpoint_here", device)
|
| 47 |
+
|
| 48 |
+
samples = diffusion.sample(id_frame, audio_emb.unsqueeze(0))
|
| 49 |
+
|
| 50 |
+
save_video(output, samples, audio=audio, fps=25, audio_rate=16000)
|
| 51 |
+
print(f'Results saved at {output}')
|
| 52 |
+
|
| 53 |
+
return FileResponse(output)
|