Spaces:
Running
Running
File size: 7,350 Bytes
b3ecc60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68716bf0c6534512aa0e010ae73e1546",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svβ¦"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from huggingface_hub import notebook_login\n",
" \n",
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RepoUrl('https://huggingface.co/Soran/CLIP_LoRA_SimCSE', endpoint='https://huggingface.co', repo_type='model', repo_id='Soran/CLIP_LoRA_SimCSE')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from huggingface_hub import create_repo\n",
" \n",
"# Repository μμ±\n",
"REPO_NAME = 'CLIP_LoRA_SimCSE'\n",
"create_repo('CLIP_LoRA_SimCSE')\n",
"\n",
"# , repo_type='model', repo_id='Soran/CLIP_LoRA_SimCSE')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Cloning https://huggingface.co/Soran/CLIP_LoRA_SimCSE into local empty directory.\n"
]
}
],
"source": [
"from huggingface_hub import Repository\n",
"\n",
"repo = Repository('/Users/juniverse/Desktop/pointcloud/huggingface_space/model', clone_from='Soran/CLIP_LoRA_SimCSE')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cp -r model/* /Users/juniverse/Desktop/pointcloud/huggingface_space/model"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# repo.git_add()\n",
"# repo.git_commit('Initial commit')\n",
"# repo.git_push()\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "upload_file() takes 1 positional argument but 2 positional arguments (and 2 keyword-only arguments) were given",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb μ
6\u001b[0m line \u001b[0;36m4\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mhuggingface_hub\u001b[39;00m \u001b[39mimport\u001b[39;00m upload_file, delete_file\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m \u001b[39m# LOCAL_FILE_PATH = '/Users/juniverse/Downloads/CLIP_LoRA_CSE_15.pt'\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m \u001b[39m# νμΌμ μ§μ μ
λ‘λ\u001b[39;00m\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m upload_file(\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39m/Users/juniverse/Downloads/CLIP_LoRA_CSE_15.pt\u001b[39;49m\u001b[39m'\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m path_in_repo\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39m./model\u001b[39;49m\u001b[39m'\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m repo_id\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mSoran/CLIP_LoRA_SimCSE\u001b[39;49m\u001b[39m'\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/juniverse/Desktop/pointcloud/huggingface_space/Custom_Youtube_Algorithm/test.ipynb#W5sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m )\n",
"File \u001b[0;32m~/opt/anaconda3/envs/veda/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[39mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[39m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[39m=\u001b[39mfn\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m, has_token\u001b[39m=\u001b[39mhas_token, kwargs\u001b[39m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/opt/anaconda3/envs/veda/lib/python3.8/site-packages/huggingface_hub/hf_api.py:849\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 846\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrun_as_future(fn, \u001b[39mself\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m 848\u001b[0m \u001b[39m# Otherwise, call the function normally\u001b[39;00m\n\u001b[0;32m--> 849\u001b[0m \u001b[39mreturn\u001b[39;00m fn(\u001b[39mself\u001b[39;49m, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"\u001b[0;31mTypeError\u001b[0m: upload_file() takes 1 positional argument but 2 positional arguments (and 2 keyword-only arguments) were given"
]
}
],
"source": [
"from huggingface_hub import upload_file, delete_file\n",
"# LOCAL_FILE_PATH = '/Users/juniverse/Downloads/CLIP_LoRA_CSE_15.pt'\n",
"# νμΌμ μ§μ μ
λ‘λ\n",
"upload_file(\n",
" '/Users/juniverse/Downloads/CLIP_LoRA_CSE_15.pt',\n",
" path_in_repo='./model',\n",
" repo_id='Soran/CLIP_LoRA_SimCSE',\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "veda",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.17"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|