File size: 13,432 Bytes
363526f 27ef145 363526f 8a7f2d8 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 8a7f2d8 363526f 8a7f2d8 363526f 8a7f2d8 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f c67ef5c 27ef145 363526f 27ef145 363526f 27ef145 363526f 5f2bc85 736f3ad 27ef145 363526f a9c6d67 363526f d276167 5f2bc85 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 5f2bc85 363526f 4139a7c 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 5f2bc85 363526f 5f2bc85 363526f 8a7f2d8 363526f 8a7f2d8 363526f d784ff5 363526f 00262e5 363526f d784ff5 363526f 00262e5 363526f 8a7f2d8 363526f 00262e5 363526f f27d668 363526f f27d668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import json
import numpy as np
import pandas as pd
import re
import os
import uuid
import logging
from io import StringIO
import sys
import traceback
from typing import Optional, Dict, Any, List
from pydantic import BaseModel, Field
from google.generativeai import GenerativeModel, configure
from dotenv import load_dotenv
import seaborn as sns
import datetime as dt
from supabase_service import upload_file_to_supabase
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
load_dotenv()
API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")[::-1]
MODEL_NAME = 'gemini-2.0-flash'
class FileProps(BaseModel):
fileName: str
filePath: str
fileType: str # 'csv' | 'image'
class Files(BaseModel):
csv_files: List[FileProps]
image_files: List[FileProps]
class FileBoxProps(BaseModel):
files: Files
os.environ['MPLBACKEND'] = 'agg'
import matplotlib.pyplot as plt
plt.show = lambda: None
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class GeminiKeyManager:
"""Manage multiple Gemini API keys with failover"""
def __init__(self, api_keys: List[str]):
self.original_keys = api_keys.copy()
self.available_keys = api_keys.copy()
self.active_key = None
self.failed_keys = {}
def configure(self) -> bool:
while self.available_keys:
key = self.available_keys.pop(0)
try:
configure(api_key=key)
self.active_key = key
logger.info(f"Configured with key: {self._mask_key(key)}")
return True
except Exception as e:
self.failed_keys[key] = str(e)
logger.error(f"Key failed: {self._mask_key(key)}. Error: {str(e)}")
logger.critical("All API keys failed")
return False
def _mask_key(self, key: str) -> str:
return f"{key[:8]}...{key[-4:]}" if key else ""
class PythonREPL:
"""Secure Python REPL with file generation tracking"""
def __init__(self, df: pd.DataFrame):
self.df = df
self.output_dir = os.path.abspath(f'generated_outputs/{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
self.local_env = {
"pd": pd,
"df": self.df.copy(),
"plt": plt,
"os": os,
"uuid": uuid,
"sns": sns,
"json": json,
"dt": dt,
"output_dir": self.output_dir
}
def execute(self, code: str) -> Dict[str, Any]:
print('Executing code...', code)
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
file_tracker = {
'csv_files': set(),
'image_files': set()
}
try:
code = f"""
import matplotlib.pyplot as plt
plt.switch_backend('agg')
{code}
plt.close('all')
"""
exec(code, self.local_env)
self.df = self.local_env.get('df', self.df)
# Track generated files
for fname in os.listdir(self.output_dir):
if fname.endswith('.csv'):
file_tracker['csv_files'].add(fname)
elif fname.lower().endswith(('.png', '.jpg', '.jpeg')):
file_tracker['image_files'].add(fname)
error = False
except Exception as e:
error_msg = traceback.format_exc()
error = True
finally:
sys.stdout = old_stdout
return {
"output": mystdout.getvalue(),
"error": error,
"error_message": error_msg if error else None,
"df": self.local_env.get('df', self.df),
"output_dir": self.output_dir,
"files": {
"csv": [os.path.join(self.output_dir, f) for f in file_tracker['csv_files']],
"images": [os.path.join(self.output_dir, f) for f in file_tracker['image_files']]
}
}
class RethinkAgent(BaseModel):
df: pd.DataFrame
max_retries: int = Field(default=5, ge=1)
gemini_model: Optional[GenerativeModel] = None
current_retry: int = Field(default=0, ge=0)
repl: Optional[PythonREPL] = None
key_manager: Optional[GeminiKeyManager] = None
conversation: List[Dict[str, Any]] = []
class Config:
arbitrary_types_allowed = True
def _extract_code(self, response: str) -> str:
code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
return code_match.group(1).strip() if code_match else response.strip()
def _generate_initial_prompt(self, query: str) -> str:
initial_prompt = f"""Generate DIRECT EXECUTION CODE (no functions, no explanations) following STRICT RULES:
CONVERSATION HISTORY:
{self.conversation}
MANDATORY REQUIREMENTS:
1. Operate directly on existing 'df' variable
2. Save ALL final DataFrames to CSV using: df.to_csv(f'{{output_dir}}/descriptive_name.csv')
3. For visualizations: plt.savefig(f'{{output_dir}}/chart_name.png')
4. Use EXACTLY this structure:
# Data processing
df_processed = df[...] # filtering/grouping
# Save results
df_processed.to_csv(f'{{output_dir}}/result.csv')
# Visualizations (if needed)
plt.figure()
... plotting code ...
plt.savefig(f'{{output_dir}}/chart.png')
plt.close()
FORBIDDEN:
- Function definitions
- Dummy data creation
- Any code blocks besides pandas operations and matplotlib
- Print statements showing dataframes
- Using any visualization library other than matplotlib or seaborn
DATAFRAME COLUMNS: {', '.join(self.df.columns)}
DATAFRAME'S FIRST FIVE ROWS: {self.df.head().to_dict('records')}
USER QUERY: {query}
EXAMPLE RESPONSE FOR "Sales by region":
# Data processing
sales_by_region = df.groupby('region')['sales'].sum().reset_index()
# Save results
sales_by_region.to_csv(f'{{output_dir}}/sales_by_region.csv')
"""
logger.info('Conversation history:', self.conversation)
return initial_prompt
def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
return f"""FIX THIS CODE (failed with: {error}) by STRICTLY FOLLOWING:
1. REMOVE ALL FUNCTION DEFINITIONS
2. ENSURE DIRECT DF OPERATIONS
3. USE EXPLICIT output_dir PATHS
4. ADD NECESSARY IMPORTS IF MISSING
5. VALIDATE COLUMN NAMES EXIST
BAD CODE:
{code}
CORRECTED CODE:"""
def initialize_model(self, api_keys: List[str]) -> bool:
self.key_manager = GeminiKeyManager(api_keys)
if not self.key_manager.configure():
raise RuntimeError("API key initialization failed")
try:
self.gemini_model = GenerativeModel(MODEL_NAME)
return True
except Exception as e:
logger.error(f"Model init failed: {str(e)}")
return False
def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
prompt = self._generate_retry_prompt(query, error, previous_code) if error else self._generate_initial_prompt(query)
try:
response = self.gemini_model.generate_content(prompt)
return self._extract_code(response.text)
except Exception as e:
if self.key_manager.available_keys and self.key_manager.configure():
return self.generate_code(query, error, previous_code)
raise
def execute_query(self, query: str) -> Dict[str, Any]:
self.repl = PythonREPL(self.df)
result = None
while self.current_retry < self.max_retries:
try:
code = self.generate_code(query,
result["error_message"] if result else None,
result["code"] if result else None)
execution_result = self.repl.execute(code)
if execution_result["error"]:
self.current_retry += 1
result = {
"error_message": execution_result["error_message"],
"code": code
}
else:
return {
"text": execution_result["output"],
"csv_files": execution_result["files"]["csv"],
"image_files": execution_result["files"]["images"]
}
except Exception as e:
return {
"error": f"Critical failure: {str(e)}",
"csv_files": [],
"image_files": []
}
return {
"error": f"Failed after {self.max_retries} retries",
"csv_files": [],
"image_files": []
}
def gemini_llm_chat(csv_url: str, query: str, conversation_history: List[Dict[str, Any]]) -> Dict[str, Any]:
try:
df = pd.read_csv(csv_url)
agent = RethinkAgent(df=df, conversation=conversation_history)
if not agent.initialize_model(API_KEYS):
return {"error": "API configuration failed"}
result = agent.execute_query(query)
if "error" in result:
return result
return {
"message": result["text"],
"csv_files": result["csv_files"],
"image_files": result["image_files"]
}
except Exception as e:
logger.error(f"Processing failed: {str(e)}")
return {
"error": f"Processing error: {str(e)}",
"csv_files": [],
"image_files": []
}
async def generate_csv_report(csv_url: str, query: str, chat_id: str, conversation_history: List[Dict[str, Any]]) -> FileBoxProps:
try:
result = gemini_llm_chat(csv_url, query, conversation_history)
logger.info(f"Raw result from gemini_llm_chat: {result}")
csv_files = []
image_files = []
# Check if we got the expected response structure
if isinstance(result, dict) and 'csv_files' in result and 'image_files' in result:
# Process CSV files
for csv_path in result['csv_files']:
if os.path.exists(csv_path):
file_name = os.path.basename(csv_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=csv_path,
file_name=unique_file_name,
chat_id=chat_id
)
csv_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="csv"
))
os.remove(csv_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload CSV {file_name}: {str(upload_error)}")
continue
# Process image files
for img_path in result['image_files']:
if os.path.exists(img_path):
file_name = os.path.basename(img_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=img_path,
file_name=unique_file_name,
chat_id=chat_id
)
image_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="image"
))
os.remove(img_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload image {file_name}: {str(upload_error)}")
continue
return FileBoxProps(
files=Files(
csv_files=csv_files,
image_files=image_files
)
)
else:
raise ValueError("Unexpected response format from gemini_llm_chat")
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
# Return empty response but log the files we found
if 'csv_files' in locals() and 'image_files' in locals():
logger.info(f"Files that were generated but not processed: CSV: {result.get('csv_files', [])}, Images: {result.get('image_files', [])}")
return FileBoxProps(
files=Files(
csv_files=[],
image_files=[]
)
)
|