File size: 28,584 Bytes
8cb6e00
7662cb9
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0e22d
 
 
be86181
 
 
ae037a5
 
 
8cb6e00
 
 
 
 
 
 
7f09169
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9feee8
 
 
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9feee8
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9feee8
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d0141
8cb6e00
b8d0141
 
 
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
 
 
 
 
 
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
8cb6e00
b8d0141
 
 
 
 
 
 
 
 
 
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
8cb6e00
b8d0141
 
 
 
 
 
 
 
8cb6e00
b8d0141
8cb6e00
 
 
b8d0141
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
 
 
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
 
 
8cb6e00
b8d0141
 
 
8cb6e00
b8d0141
 
 
8cb6e00
b8d0141
 
 
 
 
 
8cb6e00
b8d0141
 
8cb6e00
b8d0141
 
 
 
 
8cb6e00
 
b8d0141
 
 
 
8cb6e00
b8d0141
8cb6e00
b8d0141
 
 
 
 
 
 
 
8cb6e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d0141
 
 
 
 
 
 
 
2ca501d
 
 
b8d0141
7c36d75
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efb035
 
 
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efb035
 
 
b8d0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# Import necessary modules
from concurrent.futures import ProcessPoolExecutor
import os
import asyncio
import threading
import uuid
from fastapi import FastAPI, HTTPException, Header
from fastapi.encoders import jsonable_encoder
from typing import Dict
from fastapi.responses import FileResponse
import numpy as np
import pandas as pd
from pandasai import SmartDataframe
from langchain_groq.chat_models import ChatGroq
from dotenv import load_dotenv
from pydantic import BaseModel
from csv_service import clean_data, extract_chart_filenames
from urllib.parse import unquote
import csv_service
from langchain_groq import ChatGroq
import pandas as pd
from langchain_experimental.tools import PythonAstREPLTool
from langchain_experimental.agents import create_pandas_dataframe_agent
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
from util_service import _prompt_generator, process_answer
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')

# Initialize FastAPI app
app = FastAPI()

# Ensure the cache directory exists
os.makedirs("/app/cache", exist_ok=True)

os.makedirs("/app", exist_ok=True)
open("/app/pandasai.log", "a").close()  # Create the file if it doesn't exist

# Ensure the generated_charts directory exists
os.makedirs("/app/generated_charts", exist_ok=True)

load_dotenv()

image_file_path = os.getenv("IMAGE_FILE_PATH")
image_not_found = os.getenv("IMAGE_NOT_FOUND")
allowed_hosts = os.getenv("ALLOWED_HOSTS", "").split(",")
app.add_middleware(
    CORSMiddleware,
    allow_origins=allowed_hosts, 
    allow_credentials=True,
    allow_methods=["*"], 
    allow_headers=["*"],  
)

# Load environment variables
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
model_name = os.getenv("GROQ_LLM_MODEL")

class CsvUrlRequest(BaseModel):
    csv_url: str
    
class ImageRequest(BaseModel):
    image_path: str

# Thread-safe key management for groq_chat
current_groq_key_index = 0
current_groq_key_lock = threading.Lock()

# Thread-safe key management for langchain_csv_chat
current_langchain_key_index = 0
current_langchain_key_lock = threading.Lock()


# PING CHECK
@app.get("/ping")
async def root():
    return {"message": "Pong !!"}



# BASIC KNOWLEDGE BASED ON CSV

# Remove trailing slash from the URL otherwise it will redirect to GET method
@app.post("/api/basic_csv_data")
async def basic_csv_data(request: CsvUrlRequest):
    try:
        decoded_url = unquote(request.csv_url)
        print(f"Fetching CSV data from URL: {decoded_url}")
        csv_data = csv_service.get_csv_basic_info(decoded_url)    
        print(f"CSV data fetched successfully: {csv_data}")
        return {"data": csv_data}
    except Exception as e:
        print(f"Error while fetching CSV data: {e}")
        raise HTTPException(status_code=400, detail=f"Failed to retrieve CSV data: {str(e)}")


# GET THE CHART FROM A SPECIFIC FILE PATH
@app.post("/api/get-chart")
async def get_image(request: ImageRequest, authorization: str = Header(None)):
    if not authorization:
        raise HTTPException(status_code=401, detail="Authorization header missing")

    if not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid authorization header format")

    token = authorization.split(" ")[1]
    if not token:
        raise HTTPException(status_code=401, detail="Token missing")
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid token")

    try:
        image_file_path = request.image_path
        return FileResponse(image_file_path, media_type="image/png")
    except Exception as e:
        print(f"Error: {e}")
        return {"answer": "error"}
        

# GET CSV DATA FOR GENERATING THE TABLE
@app.post("/api/csv_data")
async def get_csv_data(request: CsvUrlRequest):
    try:
        decoded_url = unquote(request.csv_url)
        # print(f"Fetching CSV data from URL: {decoded_url}")
        csv_data = csv_service.generate_csv_data(decoded_url)        
        return csv_data
    except Exception as e:
        # print(f"Error while fetching CSV data: {e}")
        raise HTTPException(status_code=400, detail=f"Failed to retrieve CSV data: {str(e)}")

 



# CHAT CODING STARTS FROM HERE

# Modified groq_chat function with thread-safe key rotation
def groq_chat(csv_url: str, question: str):
    global current_groq_key_index, current_groq_key_lock

    while True:
        with current_groq_key_lock:
            if current_groq_key_index >= len(groq_api_keys):
                return {"error": "All API keys exhausted."}
            current_api_key = groq_api_keys[current_groq_key_index]

        try:
            # Delete cache file if exists
            cache_db_path = "/workspace/cache/cache_db_0.11.db"
            if os.path.exists(cache_db_path):
                try:
                    os.remove(cache_db_path)
                except Exception as e:
                    print(f"Error deleting cache DB file: {e}")

            data = clean_data(csv_url)
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            # Generate unique filename using UUID
            chart_filename = f"chart_{uuid.uuid4()}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure SmartDataframe with chart settings
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,  # Enable chart saving
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),  # Directory to save
                    'custom_chart_filename': chart_filename  # Unique filename
                }
            )
            
            answer = df.chat(question)

            # Process different response types
            if isinstance(answer, pd.DataFrame):
                processed = answer.apply(handle_out_of_range_float).to_dict(orient="records")
            elif isinstance(answer, pd.Series):
                processed = answer.apply(handle_out_of_range_float).to_dict()
            elif isinstance(answer, list):
                processed = [handle_out_of_range_float(item) for item in answer]
            elif isinstance(answer, dict):
                processed = {k: handle_out_of_range_float(v) for k, v in answer.items()}
            else:
                processed = {"answer": str(handle_out_of_range_float(answer))}

            return processed

        except Exception as e:
            error_message = str(e)
            if "429" in error_message:
                with current_groq_key_lock:
                    current_groq_key_index += 1
                    if current_groq_key_index >= len(groq_api_keys):
                        return {"error": "All API keys exhausted."}
            else:
                return {"error": error_message}

# Modified langchain_csv_chat with thread-safe key rotation
def langchain_csv_chat(csv_url: str, question: str, chart_required: bool):
    global current_langchain_key_index, current_langchain_key_lock

    data = clean_data(csv_url)
    attempts = 0

    while attempts < len(groq_api_keys):
        with current_langchain_key_lock:
            if current_langchain_key_index >= len(groq_api_keys):
                current_langchain_key_index = 0
            api_key = groq_api_keys[current_langchain_key_index]
            current_key = current_langchain_key_index
            current_langchain_key_index += 1
            attempts += 1

        try:
            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="openai-tools",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            prompt = _prompt_generator(question, chart_required)
            result = agent.invoke({"input": prompt})
            return result.get("output")

        except Exception as e:
            print(f"Error with key index {current_key}: {str(e)}")

    return {"error": "All API keys exhausted"}

# Async endpoint with non-blocking execution
@app.post("/api/csv-chat")
async def csv_chat(request: Dict, authorization: str = Header(None)):
    # Authorization checks
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Invalid authorization")
    
    token = authorization.split(" ")[1]
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid token")

    try:
        query = request.get("query")
        csv_url = request.get("csv_url")
        decoded_url = unquote(csv_url)

        if if_initial_chat_question(query):
            answer = await asyncio.to_thread(
                langchain_csv_chat, decoded_url, query, False
            )
            print("langchain_answer:", answer)
            return {"answer": jsonable_encoder(answer)}

        # Process with groq_chat first
        groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
        print("groq_answer:", groq_answer)
        
        if process_answer(groq_answer) == "Empty response received.":
            return {"answer": "Sorry, I couldn't find relevant data..."}

        if process_answer(groq_answer):
            lang_answer = await asyncio.to_thread(
                langchain_csv_chat, decoded_url, query, False
            )
            if process_answer(lang_answer):
                return {"answer": "error"}
            return {"answer": jsonable_encoder(lang_answer)}

        return {"answer": jsonable_encoder(groq_answer)}

    except Exception as e:
        print(f"Error processing request: {str(e)}")
        return {"answer": "error"}

def handle_out_of_range_float(value):
    if isinstance(value, float):
        if np.isnan(value):
            return None
        elif np.isinf(value):
            return "Infinity"
    return value







# CHART CODING STARTS FROM HERE

# instructions = """

# - Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
# - For multiple charts, arrange them in a grid format (2x2, 3x3, etc.)
# - Use colorblind-friendly palette
# - Read above instructions and follow them.

# """

# # Thread-safe configuration for chart endpoints
# current_groq_chart_key_index = 0
# current_groq_chart_lock = threading.Lock()

# current_langchain_chart_key_index = 0
# current_langchain_chart_lock = threading.Lock()

# def model():
#     global current_groq_chart_key_index, current_groq_chart_lock
#     with current_groq_chart_lock:
#         if current_groq_chart_key_index >= len(groq_api_keys):
#             raise Exception("All API keys exhausted for chart generation")
#         api_key = groq_api_keys[current_groq_chart_key_index]
#     return ChatGroq(model=model_name, api_key=api_key)

# def groq_chart(csv_url: str, question: str):
#     global current_groq_chart_key_index, current_groq_chart_lock
    
#     for attempt in range(len(groq_api_keys)):
#         try:
#             # Clean cache before processing
#             cache_db_path = "/workspace/cache/cache_db_0.11.db"
#             if os.path.exists(cache_db_path):
#                 try:
#                     os.remove(cache_db_path)
#                 except Exception as e:
#                     print(f"Cache cleanup error: {e}")

#             data = clean_data(csv_url)
#             with current_groq_chart_lock:
#                 current_api_key = groq_api_keys[current_groq_chart_key_index]
            
#             llm = ChatGroq(model=model_name, api_key=current_api_key)
            
#             # Generate unique filename using UUID
#             chart_filename = f"chart_{uuid.uuid4()}.png"
#             chart_path = os.path.join("generated_charts", chart_filename)
            
#             # Configure SmartDataframe with chart settings
#             df = SmartDataframe(
#                 data,
#                 config={
#                     'llm': llm,
#                     'save_charts': True,  # Enable chart saving
#                     'open_charts': False,
#                     'save_charts_path': os.path.dirname(chart_path),  # Directory to save
#                     'custom_chart_filename': chart_filename  # Unique filename
#                 }
#             )
            
#             answer = df.chat(question + instructions)
            
#             if process_answer(answer):
#                 return "Chart not generated"
#             return answer

#         except Exception as e:
#             error = str(e)
#             if "429" in error:
#                 with current_groq_chart_lock:
#                     current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
#             else:
#                 print(f"Chart generation error: {error}")
#                 return {"error": error}
    
#     return {"error": "All API keys exhausted for chart generation"}



# def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
#     global current_langchain_chart_key_index, current_langchain_chart_lock
    
#     data = clean_data(csv_url)

#     for attempt in range(len(groq_api_keys)):
#         try:
#             with current_langchain_chart_lock:
#                 api_key = groq_api_keys[current_langchain_chart_key_index]
#                 current_key = current_langchain_chart_key_index
#                 current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)

#             llm = ChatGroq(model=model_name, api_key=api_key)
#             tool = PythonAstREPLTool(locals={
#                 "df": data,
#                 "pd": pd,
#                 "np": np,
#                 "plt": plt,
#                 "sns": sns,
#                 "matplotlib": matplotlib,
#                 "uuid": uuid
#             })

#             agent = create_pandas_dataframe_agent(
#                 llm,
#                 data,
#                 agent_type="openai-tools",
#                 verbose=True,
#                 allow_dangerous_code=True,
#                 extra_tools=[tool],
#                 return_intermediate_steps=True
#             )

#             result = agent.invoke({"input": _prompt_generator(question, True)})
#             output = result.get("output", "")

#             # Verify chart file creation
#             chart_files = extract_chart_filenames(output)
#             if len(chart_files) > 0:
#                 return chart_files

#             if attempt < len(groq_api_keys) - 1:
#                 print(f"Langchain chart error (key {current_key}): {output}")

#         except Exception as e:
#             print(f"Langchain chart error (key {current_key}): {str(e)}")
    
#     return "Chart generation failed after all retries"

# @app.post("/api/csv-chart")
# async def csv_chart(request: dict, authorization: str = Header(None)):
#     # Authorization verification
#     if not authorization or not authorization.startswith("Bearer "):
#         raise HTTPException(status_code=401, detail="Authorization required")
    
#     token = authorization.split(" ")[1]
#     if token != os.getenv("AUTH_TOKEN"):
#         raise HTTPException(status_code=403, detail="Invalid credentials")

#     try:
#         query = request.get("query", "")
#         csv_url = unquote(request.get("csv_url", ""))
        
#         # Parallel processing with thread pool
#         if if_initial_chart_question(query):
#             chart_paths = await asyncio.to_thread(
#                 langchain_csv_chart, csv_url, query, True
#             )
#             print(chart_paths)
        
#             if len(chart_paths) > 0:
#                return FileResponse(f"{image_file_path}/{chart_paths[0]}", media_type="image/png")
        
#         # Groq-based chart generation
#         groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
#         print(f"Generated Chart: {groq_result}")
#         if groq_result != 'Chart not generated':
#             return FileResponse(groq_result, media_type="image/png")
          
        
#         # Fallback to Langchain
#         langchain_paths = await asyncio.to_thread(
#             langchain_csv_chart, csv_url, query, True
#         )
        
#         print (langchain_paths)
       
#         if len(langchain_paths) > 0:
#            return FileResponse(f"{image_file_path}/{langchain_paths[0]}", media_type="image/png")
#         else:
#            return {"error": "All chart generation methods failed"}

#     except Exception as e:
#         print(f"Critical chart error: {str(e)}")
#         return {"error": "Internal system error"}
    
    
    



# MERGED CALL

# class CSVData(BaseModel):
#     csv_url: str
#     query: str
#     chart_required: bool

# @app.post("/api/v1/csv_chat")
# async def csv_chat(csv_data: CSVData, authorization: str = Header(None)):
#     # Authorization verification
#     if not authorization or not authorization.startswith("Bearer "):
#         raise HTTPException(status_code=401, detail="Authorization required")

#     token = authorization.split(" ")[1]
#     if token != os.getenv("AUTH_TOKEN"):
#         raise HTTPException(status_code=403, detail="Invalid credentials")

#     csv_url = csv_data.csv_url
#     query = csv_data.query
#     chart_required = csv_data.chart_required
    
#     if(chart_required == True):
#         try:
#             # Parallel processing with thread pool
#             if if_initial_chart_question(query):
#                 chart_path = await asyncio.to_thread(
#                     langchain_csv_chart, csv_url, query, True
#                 )
#                 if "temp" in chart_path:
#                    print("langchain chart Generated")
#                    return FileResponse('temp.png', media_type="image/png")
#                 return {"error": "Chart generation failed"}
            
#             # Groq-based chart generation
#             groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
#             if groq_result == "Chart Generated":
#                 return FileResponse("exports/charts/temp_chart.png")
#             # Fallback to Langchain
#             langchain_path = await asyncio.to_thread(
#                 langchain_csv_chart, csv_url, query, True
#             )
#             if "temp" in langchain_path:
#                 print("langchain chart Generated")
#                 return FileResponse('temp.png', media_type="image/png")
#             return {"error": "All chart generation methods failed"}

#         except Exception as e:
#             print(f"Critical chart error: {str(e)}")
#             raise HTTPException(status_code=500, detail="Internal server error")
#     else:
#         try:            
#             if if_initial_chat_question(query):
#                 answer = await asyncio.to_thread(
#                  langchain_csv_chat, csv_url, query, False
#                 )
#                 print("langchain_answer:", answer)
#                 return {"answer": jsonable_encoder(answer)}

#             # Process with groq_chat first
#             groq_answer = await asyncio.to_thread(groq_chat, csv_url, query)
#             print("groq_answer:", groq_answer)
        
#             if process_answer(groq_answer) == "Empty response received.":
#               return {"answer": "Sorry, I couldn't find relevant data..."}

#             if process_answer(groq_answer):
#               lang_answer = await asyncio.to_thread(
#                 langchain_csv_chat, csv_url, query, False
#               )
#               if process_answer(lang_answer):
#                 return {"answer": "error"}
#               return {"answer": jsonable_encoder(lang_answer)}

#             return {"answer": jsonable_encoder(groq_answer)}

#         except Exception as e:
#             print(f"Error processing request: {str(e)}")
#             raise HTTPException(status_code=500, detail="Internal server error")
    
        



# Global locks for key rotation (chart endpoints)
current_groq_chart_key_index = 0
current_groq_chart_lock = threading.Lock()
current_langchain_chart_key_index = 0
current_langchain_chart_lock = threading.Lock()

max_cpus = os.cpu_count()
print("Available CPUs:", max_cpus)

# Use a process pool to run CPU-bound chart generation
process_executor = ProcessPoolExecutor(max_workers=4)

# --- GROQ-BASED CHART GENERATION ---
def groq_chart(csv_url: str, question: str):
    """
    Generate a chart using the groq-based method.
    Modifications:
      • No deletion of a shared cache file (avoid interference).
      • After chart generation, close all matplotlib figures.
      • Return the full path of the saved chart.
    """
    global current_groq_chart_key_index, current_groq_chart_lock
    
    for attempt in range(len(groq_api_keys)):
        try:
            # Instead of deleting a global cache file, you might later configure a per-request cache.
            data = clean_data(csv_url)
            with current_groq_chart_lock:
                current_api_key = groq_api_keys[current_groq_chart_key_index]
            
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            
            # Generate a unique filename and full path for the chart
            chart_filename = f"chart_{uuid.uuid4().hex}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure your dataframe tool (e.g. using SmartDataframe) to save charts.
            # (Assuming your SmartDataframe uses these settings to save charts.)
            from pandasai import SmartDataframe  # Import here if not already imported
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),
                    'custom_chart_filename': chart_filename
                }
            )
            
            # Append any extra instructions if needed
            instructions = """
            - Ensure each value is clearly visible.
            - Adjust font sizes, rotate labels if necessary.
            - Use a colorblind-friendly palette.
            - Arrange multiple charts in a grid if needed.
            """
            answer = df.chat(question + instructions)
            
            # Make sure to close figures so they don't conflict between processes
            plt.close('all')
            
            # If process_answer indicates a problem, return a failure message.
            if process_answer(answer):
                return "Chart not generated"
            # Return the chart path that was used for saving
            return chart_path

        except Exception as e:
            error = str(e)
            if "429" in error:
                with current_groq_chart_lock:
                    current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
            else:
                print(f"Groq chart generation error: {error}")
                return {"error": error}
    
    return {"error": "All API keys exhausted for chart generation"}


# --- LANGCHAIN-BASED CHART GENERATION ---
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
    """
    Generate a chart using the langchain-based method.
    Modifications:
      • No shared deletion of cache.
      • Close matplotlib figures after generation.
      • Return a list of full chart file paths.
    """
    global current_langchain_chart_key_index, current_langchain_chart_lock
    
    data = clean_data(csv_url)

    for attempt in range(len(groq_api_keys)):
        try:
            with current_langchain_chart_lock:
                api_key = groq_api_keys[current_langchain_chart_key_index]
                current_key = current_langchain_chart_key_index
                current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)

            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib,
                "uuid": uuid
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="openai-tools",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            result = agent.invoke({"input": _prompt_generator(question, True)})
            output = result.get("output", "")

            # Close figures to avoid interference
            plt.close('all')

            # Extract chart filenames (assuming extract_chart_filenames returns a list)
            chart_files = extract_chart_filenames(output)
            if len(chart_files) > 0:
                # Return full paths (join with your image_file_path)
                return [os.path.join(image_file_path, f) for f in chart_files]

            if attempt < len(groq_api_keys) - 1:
                print(f"Langchain chart error (key {current_key}): {output}")

        except Exception as e:
            print(f"Langchain chart error (key {current_key}): {str(e)}")
    
    return "Chart generation failed after all retries"


# --- FASTAPI ENDPOINT FOR CHART GENERATION ---
@app.post("/api/csv-chart")
async def csv_chart(request: dict, authorization: str = Header(None)):
    """
    Endpoint for generating a chart from CSV data.
    This endpoint uses a ProcessPoolExecutor to run the (CPU-bound) chart generation
    functions in separate processes so that multiple requests can run in parallel.
    """
    # --- Authorization Check ---
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Authorization required")
    
    token = authorization.split(" ")[1]
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid credentials")

    try:
        query = request.get("query", "")
        csv_url = unquote(request.get("csv_url", ""))
        
        loop = asyncio.get_running_loop()
        # First, try the langchain-based method if the question qualifies
        if if_initial_chart_question(query):
            langchain_result = await loop.run_in_executor(
                process_executor, langchain_csv_chart, csv_url, query, True
            )
            print("Langchain chart result:", langchain_result)
            if isinstance(langchain_result, list) and len(langchain_result) > 0:
               return FileResponse(langchain_result[0], media_type="image/png")
        
        # Next, try the groq-based method
        groq_result = await loop.run_in_executor(
            process_executor, groq_chart, csv_url, query
        )
        print(f"Groq chart result: {groq_result}")
        if isinstance(groq_result, str) and groq_result != "Chart not generated":
            return FileResponse(groq_result, media_type="image/png")
          
        # Fallback: try langchain-based again
        langchain_paths = await loop.run_in_executor(
            process_executor, langchain_csv_chart, csv_url, query, True
        )
        print("Fallback langchain chart result:", langchain_paths)
        if isinstance(langchain_paths, list) and len(langchain_paths) > 0:
           return FileResponse(langchain_paths[0], media_type="image/png")
        else:
           return {"error": "All chart generation methods failed"}

    except Exception as e:
        print(f"Critical chart error: {str(e)}")
        return {"error": "Internal system error"}