FastApi / gemini_report_generator.py
Soumik555's picture
added csv-agent-default in next.js
4139a7c
raw
history blame
13.4 kB
import json
import numpy as np
import pandas as pd
import re
import os
import uuid
import logging
from io import StringIO
import sys
import traceback
from typing import Optional, Dict, Any, List
from pydantic import BaseModel, Field
from google.generativeai import GenerativeModel, configure
from dotenv import load_dotenv
import seaborn as sns
import datetime as dt
from supabase_service import upload_file_to_supabase
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
load_dotenv()
API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")[::-1]
MODEL_NAME = 'gemini-2.0-flash'
class FileProps(BaseModel):
fileName: str
filePath: str
fileType: str # 'csv' | 'image'
class Files(BaseModel):
csv_files: List[FileProps]
image_files: List[FileProps]
class FileBoxProps(BaseModel):
files: Files
os.environ['MPLBACKEND'] = 'agg'
import matplotlib.pyplot as plt
plt.show = lambda: None
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class GeminiKeyManager:
"""Manage multiple Gemini API keys with failover"""
def __init__(self, api_keys: List[str]):
self.original_keys = api_keys.copy()
self.available_keys = api_keys.copy()
self.active_key = None
self.failed_keys = {}
def configure(self) -> bool:
while self.available_keys:
key = self.available_keys.pop(0)
try:
configure(api_key=key)
self.active_key = key
logger.info(f"Configured with key: {self._mask_key(key)}")
return True
except Exception as e:
self.failed_keys[key] = str(e)
logger.error(f"Key failed: {self._mask_key(key)}. Error: {str(e)}")
logger.critical("All API keys failed")
return False
def _mask_key(self, key: str) -> str:
return f"{key[:8]}...{key[-4:]}" if key else ""
class PythonREPL:
"""Secure Python REPL with file generation tracking"""
def __init__(self, df: pd.DataFrame):
self.df = df
self.output_dir = os.path.abspath(f'generated_outputs/{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
self.local_env = {
"pd": pd,
"df": self.df.copy(),
"plt": plt,
"os": os,
"uuid": uuid,
"sns": sns,
"json": json,
"dt": dt,
"output_dir": self.output_dir
}
def execute(self, code: str) -> Dict[str, Any]:
print('Executing code...', code)
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
file_tracker = {
'csv_files': set(),
'image_files': set()
}
try:
code = f"""
import matplotlib.pyplot as plt
plt.switch_backend('agg')
{code}
plt.close('all')
"""
exec(code, self.local_env)
self.df = self.local_env.get('df', self.df)
# Track generated files
for fname in os.listdir(self.output_dir):
if fname.endswith('.csv'):
file_tracker['csv_files'].add(fname)
elif fname.lower().endswith(('.png', '.jpg', '.jpeg')):
file_tracker['image_files'].add(fname)
error = False
except Exception as e:
error_msg = traceback.format_exc()
error = True
finally:
sys.stdout = old_stdout
return {
"output": mystdout.getvalue(),
"error": error,
"error_message": error_msg if error else None,
"df": self.local_env.get('df', self.df),
"output_dir": self.output_dir,
"files": {
"csv": [os.path.join(self.output_dir, f) for f in file_tracker['csv_files']],
"images": [os.path.join(self.output_dir, f) for f in file_tracker['image_files']]
}
}
class RethinkAgent(BaseModel):
df: pd.DataFrame
max_retries: int = Field(default=5, ge=1)
gemini_model: Optional[GenerativeModel] = None
current_retry: int = Field(default=0, ge=0)
repl: Optional[PythonREPL] = None
key_manager: Optional[GeminiKeyManager] = None
conversation: List[Dict[str, Any]] = []
class Config:
arbitrary_types_allowed = True
def _extract_code(self, response: str) -> str:
code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
return code_match.group(1).strip() if code_match else response.strip()
def _generate_initial_prompt(self, query: str) -> str:
initial_prompt = f"""Generate DIRECT EXECUTION CODE (no functions, no explanations) following STRICT RULES:
CONVERSATION HISTORY:
{self.conversation}
MANDATORY REQUIREMENTS:
1. Operate directly on existing 'df' variable
2. Save ALL final DataFrames to CSV using: df.to_csv(f'{{output_dir}}/descriptive_name.csv')
3. For visualizations: plt.savefig(f'{{output_dir}}/chart_name.png')
4. Use EXACTLY this structure:
# Data processing
df_processed = df[...] # filtering/grouping
# Save results
df_processed.to_csv(f'{{output_dir}}/result.csv')
# Visualizations (if needed)
plt.figure()
... plotting code ...
plt.savefig(f'{{output_dir}}/chart.png')
plt.close()
FORBIDDEN:
- Function definitions
- Dummy data creation
- Any code blocks besides pandas operations and matplotlib
- Print statements showing dataframes
- Using any visualization library other than matplotlib or seaborn
DATAFRAME COLUMNS: {', '.join(self.df.columns)}
DATAFRAME'S FIRST FIVE ROWS: {self.df.head().to_dict('records')}
USER QUERY: {query}
EXAMPLE RESPONSE FOR "Sales by region":
# Data processing
sales_by_region = df.groupby('region')['sales'].sum().reset_index()
# Save results
sales_by_region.to_csv(f'{{output_dir}}/sales_by_region.csv')
"""
logger.info('Conversation history:', self.conversation)
return initial_prompt
def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
return f"""FIX THIS CODE (failed with: {error}) by STRICTLY FOLLOWING:
1. REMOVE ALL FUNCTION DEFINITIONS
2. ENSURE DIRECT DF OPERATIONS
3. USE EXPLICIT output_dir PATHS
4. ADD NECESSARY IMPORTS IF MISSING
5. VALIDATE COLUMN NAMES EXIST
BAD CODE:
{code}
CORRECTED CODE:"""
def initialize_model(self, api_keys: List[str]) -> bool:
self.key_manager = GeminiKeyManager(api_keys)
if not self.key_manager.configure():
raise RuntimeError("API key initialization failed")
try:
self.gemini_model = GenerativeModel(MODEL_NAME)
return True
except Exception as e:
logger.error(f"Model init failed: {str(e)}")
return False
def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
prompt = self._generate_retry_prompt(query, error, previous_code) if error else self._generate_initial_prompt(query)
try:
response = self.gemini_model.generate_content(prompt)
return self._extract_code(response.text)
except Exception as e:
if self.key_manager.available_keys and self.key_manager.configure():
return self.generate_code(query, error, previous_code)
raise
def execute_query(self, query: str) -> Dict[str, Any]:
self.repl = PythonREPL(self.df)
result = None
while self.current_retry < self.max_retries:
try:
code = self.generate_code(query,
result["error_message"] if result else None,
result["code"] if result else None)
execution_result = self.repl.execute(code)
if execution_result["error"]:
self.current_retry += 1
result = {
"error_message": execution_result["error_message"],
"code": code
}
else:
return {
"text": execution_result["output"],
"csv_files": execution_result["files"]["csv"],
"image_files": execution_result["files"]["images"]
}
except Exception as e:
return {
"error": f"Critical failure: {str(e)}",
"csv_files": [],
"image_files": []
}
return {
"error": f"Failed after {self.max_retries} retries",
"csv_files": [],
"image_files": []
}
def gemini_llm_chat(csv_url: str, query: str, conversation_history: List[Dict[str, Any]]) -> Dict[str, Any]:
try:
df = pd.read_csv(csv_url)
agent = RethinkAgent(df=df, conversation=conversation_history)
if not agent.initialize_model(API_KEYS):
return {"error": "API configuration failed"}
result = agent.execute_query(query)
if "error" in result:
return result
return {
"message": result["text"],
"csv_files": result["csv_files"],
"image_files": result["image_files"]
}
except Exception as e:
logger.error(f"Processing failed: {str(e)}")
return {
"error": f"Processing error: {str(e)}",
"csv_files": [],
"image_files": []
}
async def generate_csv_report(csv_url: str, query: str, chat_id: str, conversation_history: List[Dict[str, Any]]) -> FileBoxProps:
try:
result = gemini_llm_chat(csv_url, query, conversation_history)
logger.info(f"Raw result from gemini_llm_chat: {result}")
csv_files = []
image_files = []
# Check if we got the expected response structure
if isinstance(result, dict) and 'csv_files' in result and 'image_files' in result:
# Process CSV files
for csv_path in result['csv_files']:
if os.path.exists(csv_path):
file_name = os.path.basename(csv_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=csv_path,
file_name=unique_file_name,
chat_id=chat_id
)
csv_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="csv"
))
os.remove(csv_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload CSV {file_name}: {str(upload_error)}")
continue
# Process image files
for img_path in result['image_files']:
if os.path.exists(img_path):
file_name = os.path.basename(img_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=img_path,
file_name=unique_file_name,
chat_id=chat_id
)
image_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="image"
))
os.remove(img_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload image {file_name}: {str(upload_error)}")
continue
return FileBoxProps(
files=Files(
csv_files=csv_files,
image_files=image_files
)
)
else:
raise ValueError("Unexpected response format from gemini_llm_chat")
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
# Return empty response but log the files we found
if 'csv_files' in locals() and 'image_files' in locals():
logger.info(f"Files that were generated but not processed: CSV: {result.get('csv_files', [])}, Images: {result.get('image_files', [])}")
return FileBoxProps(
files=Files(
csv_files=[],
image_files=[]
)
)