FastApi / python_code_executor_service.py
Soumik555's picture
added together ai agent
c5fdb62
raw
history blame
8.54 kB
import os
from dotenv import load_dotenv
import uuid
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, Any, List, Optional
import pandas as pd
import numpy as np
import json
import io
import contextlib
import traceback
import time
from datetime import datetime, timedelta
import seaborn as sns
import scipy.stats as stats
from pydantic import BaseModel
from supabase_service import upload_file_to_supabase
# Load environment variables from .env file
load_dotenv()
class CodeResponse(BaseModel):
"""Container for code-related responses"""
language: str = "python"
code: str
class ChartSpecification(BaseModel):
"""Details about requested charts"""
image_description: str
code: Optional[str] = None
class AnalysisOperation(BaseModel):
"""Container for a single analysis operation with its code and result"""
code: CodeResponse
description: str
class CsvChatResult(BaseModel):
"""Structured response for CSV-related AI interactions"""
response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
casual_response: str
analysis_operations: List[AnalysisOperation]
charts: Optional[List[ChartSpecification]] = None
class PythonExecutor:
"""Handles execution of Python code with comprehensive data analysis libraries"""
def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
"""
Initialize the PythonExecutor with a DataFrame
Args:
df (pd.DataFrame): The DataFrame to operate on
charts_folder (str): Folder to save charts in
"""
self.df = df
self.charts_folder = Path(charts_folder)
self.charts_folder.mkdir(exist_ok=True)
def execute_code(self, code: str) -> Dict[str, Any]:
"""
Execute Python code with full data analysis context and return results
Args:
code (str): Python code to execute
Returns:
dict: Dictionary containing execution results and any generated plots
"""
output = ""
error = None
plots = []
# Capture stdout
stdout = io.StringIO()
# Monkey patch plt.show() to save figures
original_show = plt.show
def custom_show():
"""Custom show function that saves plots instead of displaying them"""
for i, fig in enumerate(plt.get_fignums()):
figure = plt.figure(fig)
# Save plot to bytes buffer
buf = io.BytesIO()
figure.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plots.append(buf.read())
plt.close('all')
try:
# Create comprehensive execution context with data analysis libraries
exec_globals = {
# Core data analysis
'pd': pd,
'np': np,
'df': self.df,
# Visualization
'plt': plt,
'sns': sns,
# Statistics
'stats': stats,
# Date/time
'datetime': datetime,
'timedelta': timedelta,
'time': time,
# Utilities
'json': json,
'__builtins__': __builtins__,
}
# Replace plt.show with custom implementation
plt.show = custom_show
# Execute code and capture output
with contextlib.redirect_stdout(stdout):
exec(code, exec_globals)
output = stdout.getvalue()
except Exception as e:
error = {
"message": str(e),
"traceback": traceback.format_exc()
}
finally:
# Restore original plt.show
plt.show = original_show
return {
'output': output,
'error': error,
'plots': plots
}
async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
"""
Save plot to Supabase storage and return the public URL
Args:
plot_data (bytes): Image data in bytes
description (str): Description of the plot
chat_id (str): ID of the chat session
Returns:
str: Public URL of the uploaded chart
"""
# Generate unique filename
filename = f"chart_{uuid.uuid4().hex}.png"
filepath = self.charts_folder / filename
# Save the plot locally first
with open(filepath, 'wb') as f:
f.write(plot_data)
try:
# Upload to Supabase
public_url = await upload_file_to_supabase(
file_path=str(filepath),
file_name=filename,
chat_id=chat_id
)
# Remove the local file after upload
os.remove(filepath)
return public_url
except Exception as e:
# Clean up local file if upload fails
if os.path.exists(filepath):
os.remove(filepath)
raise Exception(f"Failed to upload plot to Supabase: {e}")
def _looks_like_structured_data(self, output: str) -> bool:
"""Helper to detect JSON-like or array-like output"""
output = output.strip()
return (
output.startswith('{') and output.endswith('}') or # JSON object
output.startswith('[') and output.endswith(']') or # Array
'\n' in output and '=' in output # Python console output
)
async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
"""
Process the CsvChatResult response and generate formatted output
with markdown code blocks for structured data.
Args:
response (CsvChatResult): Response from CSV analysis
chat_id (str): ID of the chat session
Returns:
str: Formatted output with results and image URLs
"""
output_parts = []
# Add casual response
output_parts.append(response.casual_response)
# Process analysis operations
for operation in response.analysis_operations:
# Execute the code
result = self.execute_code(operation.code.code)
# Add operation description
output_parts.append(f"\n{operation.description}:")
# Add output or error with markdown wrapping
if result['error']:
output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
else:
output = result['output'].strip()
if self._looks_like_structured_data(output):
output_parts.append("```python\n" + output + "\n```")
else:
output_parts.append(output)
# Process charts
if response.charts:
output_parts.append("\nVisualizations:")
for chart in response.charts:
if chart.code:
result = self.execute_code(chart.code)
if result['plots']:
for plot_data in result['plots']:
try:
public_url = await self.save_plot_to_supabase(
plot_data=plot_data,
description=chart.image_description,
chat_id=chat_id
)
output_parts.append(f"\n{chart.image_description}")
output_parts.append(f"![{chart.image_description}]({public_url})")
except Exception as e:
output_parts.append(f"\nError uploading chart: {str(e)}")
elif result['error']:
output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
return "\n".join(output_parts)