FastApi / python_code_executor_service.py
Soumik555's picture
added together ai agent
06bcd33
raw
history blame
9.14 kB
import uuid
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, Any, List, Optional
import pandas as pd
import numpy as np
import json
import io
import contextlib
import traceback
import time
from datetime import datetime, timedelta
import seaborn as sns
import scipy.stats as stats
from pydantic import BaseModel
class CodeResponse(BaseModel):
"""Container for code-related responses"""
language: str = "python"
code: str
class ChartSpecification(BaseModel):
"""Details about requested charts"""
image_description: str
code: Optional[str] = None
class AnalysisOperation(BaseModel):
"""Container for a single analysis operation with its code and result"""
code: CodeResponse
description: str
class CsvChatResult(BaseModel):
"""Structured response for CSV-related AI interactions"""
response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
casual_response: str
analysis_operations: List[AnalysisOperation]
charts: Optional[List[ChartSpecification]] = None
class PythonExecutor:
"""Handles execution of Python code with comprehensive data analysis libraries"""
def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
"""
Initialize the PythonExecutor with a DataFrame
Args:
df (pd.DataFrame): The DataFrame to operate on
charts_folder (str): Folder to save charts in
"""
self.df = df
self.charts_folder = Path(charts_folder)
self.charts_folder.mkdir(exist_ok=True)
def execute_code(self, code: str) -> Dict[str, Any]:
"""
Execute Python code with full data analysis context and return results
Args:
code (str): Python code to execute
Returns:
dict: Dictionary containing execution results and any generated plots
"""
output = ""
error = None
plots = []
# Capture stdout
stdout = io.StringIO()
# Monkey patch plt.show() to save figures
original_show = plt.show
def custom_show():
"""Custom show function that saves plots instead of displaying them"""
for i, fig in enumerate(plt.get_fignums()):
figure = plt.figure(fig)
# Save plot to bytes buffer
buf = io.BytesIO()
figure.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plots.append(buf.read())
plt.close('all')
try:
# Create comprehensive execution context with data analysis libraries
exec_globals = {
# Core data analysis
'pd': pd,
'np': np,
'df': self.df,
# Visualization
'plt': plt,
'sns': sns,
# Statistics
'stats': stats,
# Date/time
'datetime': datetime,
'timedelta': timedelta,
'time': time,
# Utilities
'json': json,
'__builtins__': __builtins__,
}
# Replace plt.show with custom implementation
plt.show = custom_show
# Execute code and capture output
with contextlib.redirect_stdout(stdout):
exec(code, exec_globals)
output = stdout.getvalue()
except Exception as e:
error = {
"message": str(e),
"traceback": traceback.format_exc()
}
finally:
# Restore original plt.show
plt.show = original_show
return {
'output': output,
'error': error,
'plots': plots
}
def save_plot_dummy(self, plot_data: bytes, description: str) -> str:
"""
Save plot to charts folder and return a dummy URL
Args:
plot_data (bytes): Image data in bytes
description (str): Description of the plot
Returns:
str: Dummy URL for the chart
"""
# Generate unique filename
filename = f"chart_{uuid.uuid4().hex}.png"
filepath = self.charts_folder / filename
# Save the plot (even though we're using dummy URLs, we still save it)
with open(filepath, 'wb') as f:
f.write(plot_data)
# Return a dummy URL
return f"https://example.com/charts/{filename}"
# def process_response(self, response: CsvChatResult) -> str:
# """
# Process the CsvChatResult response and generate formatted output
# Args:
# response (CsvChatResult): Response from CSV analysis
# Returns:
# str: Formatted output with results and dummy image URLs
# """
# output_parts = []
# # Add casual response
# output_parts.append(response.casual_response)
# # Process analysis operations
# for operation in response.analysis_operations:
# # Execute the code
# result = self.execute_code(operation.code.code)
# # Add operation description
# output_parts.append(f"\n{operation.description}:")
# # Add output or error
# if result['error']:
# output_parts.append(f"Error: {result['error']['message']}")
# else:
# output_parts.append(result['output'].strip())
# # Process charts if they exist
# if response.charts:
# output_parts.append("\nVisualizations:")
# for chart in response.charts:
# if chart.code:
# # Execute the chart code
# result = self.execute_code(chart.code)
# if result['plots']:
# # Save each generated plot and get dummy URL
# for plot_data in result['plots']:
# dummy_url = self.save_plot_dummy(plot_data, chart.image_description)
# output_parts.append(f"\n{chart.image_description}")
# output_parts.append(f"![{chart.image_description}]({dummy_url})")
# elif result['error']:
# output_parts.append(f"\nError generating {chart.image_description}: {result['error']['message']}")
# return "\n".join(output_parts)
def process_response(self, response: CsvChatResult) -> str:
"""
Process the CsvChatResult response and generate formatted output
with markdown code blocks for structured data.
"""
output_parts = []
# Add casual response
output_parts.append(response.casual_response)
# Process analysis operations
for operation in response.analysis_operations:
# Execute the code
result = self.execute_code(operation.code.code)
# Add operation description
output_parts.append(f"\n{operation.description}:")
# Add output or error with markdown wrapping
if result['error']:
output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
else:
output = result['output'].strip()
if self._looks_like_structured_data(output): # New helper method
output_parts.append("```python\n" + output + "\n```")
else:
output_parts.append(output)
# Process charts remains the same
if response.charts:
output_parts.append("\nVisualizations:")
for chart in response.charts:
if chart.code:
result = self.execute_code(chart.code)
if result['plots']:
for plot_data in result['plots']:
dummy_url = self.save_plot_dummy(plot_data, chart.image_description)
output_parts.append(f"\n{chart.image_description}")
output_parts.append(f"![{chart.image_description}]({dummy_url})")
elif result['error']:
output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
return "\n".join(output_parts)
def _looks_like_structured_data(self, output: str) -> bool:
"""Helper to detect JSON-like or array-like output"""
output = output.strip()
return (
output.startswith('{') and output.endswith('}') or # JSON object
output.startswith('[') and output.endswith(']') or # Array
'\n' in output and '=' in output # Python console output
)