openai key rotate
Browse files- gemini_langchain_agent.py +260 -55
- gemini_report_generator.py +410 -0
- groq_chart.py +101 -0
- groq_chat.py +89 -0
- lc_groq_chart.py +82 -0
- lc_groq_chat.py +75 -0
- orchestrator_agent.py +146 -45
- orchestrator_functions.py +0 -1
gemini_langchain_agent.py
CHANGED
@@ -18,12 +18,17 @@ matplotlib.use('Agg')
|
|
18 |
|
19 |
load_dotenv()
|
20 |
model_name = 'gemini-2.0-flash' # Specify the model name
|
21 |
-
google_api_keys =
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def create_agent(llm, data, tools):
|
25 |
"""Create agent with tool names"""
|
26 |
-
|
27 |
return create_pandas_dataframe_agent(
|
28 |
llm,
|
29 |
data,
|
@@ -34,69 +39,62 @@ def create_agent(llm, data, tools):
|
|
34 |
return_intermediate_steps=True
|
35 |
)
|
36 |
|
37 |
-
|
38 |
def _prompt_generator(question: str, chart_required: bool):
|
39 |
-
|
40 |
chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
"""
|
50 |
|
51 |
chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
if chart_required:
|
84 |
return ChatPromptTemplate.from_template(chart_prompt)
|
85 |
else:
|
86 |
return ChatPromptTemplate.from_template(chat_prompt)
|
87 |
|
88 |
def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
|
89 |
-
global
|
90 |
data = pd.read_csv(csv_url)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
while attempts < total_keys:
|
95 |
try:
|
96 |
-
|
97 |
-
print(f"Using
|
98 |
-
|
99 |
-
llm = ChatGoogleGenerativeAI(model=model_name, api_key=api_key)
|
100 |
|
101 |
# Create tool with validated name
|
102 |
tool = PythonAstREPLTool(
|
@@ -113,15 +111,222 @@ def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bo
|
|
113 |
)
|
114 |
|
115 |
agent = create_agent(llm, data, [tool])
|
116 |
-
|
117 |
prompt = _prompt_generator(question, chart_required)
|
118 |
result = agent.invoke({"input": prompt})
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
except Exception as e:
|
122 |
-
print(f"Error using
|
123 |
-
|
124 |
-
attempts += 1
|
125 |
|
126 |
-
print("All
|
127 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
model_name = 'gemini-2.0-flash' # Specify the model name
|
21 |
+
google_api_keys = os.getenv("GEMINI_API_KEYS").split(",")
|
22 |
+
|
23 |
+
# Create pre-initialized LLM instances
|
24 |
+
llm_instances = [
|
25 |
+
ChatGoogleGenerativeAI(model=model_name, api_key=key)
|
26 |
+
for key in google_api_keys
|
27 |
+
]
|
28 |
+
current_instance_index = 0 # Track current instance being used
|
29 |
|
30 |
def create_agent(llm, data, tools):
|
31 |
"""Create agent with tool names"""
|
|
|
32 |
return create_pandas_dataframe_agent(
|
33 |
llm,
|
34 |
data,
|
|
|
39 |
return_intermediate_steps=True
|
40 |
)
|
41 |
|
|
|
42 |
def _prompt_generator(question: str, chart_required: bool):
|
|
|
43 |
chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:
|
44 |
|
45 |
+
1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.
|
46 |
+
2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.
|
47 |
+
3. **Communication:** Provide concise, professional, and well-structured responses.
|
48 |
+
4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)
|
49 |
|
50 |
+
**Query:** {question}
|
51 |
+
"""
|
|
|
52 |
|
53 |
chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:
|
54 |
|
55 |
+
1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
|
56 |
+
2. Visualization requirements:
|
57 |
+
- Adjust font sizes, rotate labels (45° if needed), truncate for readability
|
58 |
+
- Figure size: (12, 6)
|
59 |
+
- Descriptive titles (fontsize=14)
|
60 |
+
- Colorblind-friendly palettes
|
61 |
+
3. File handling rules:
|
62 |
+
- Create MAXIMUM 2 charts if absolutely necessary
|
63 |
+
- For multiple charts:
|
64 |
+
* Arrange in grid format (2x1 vertical layout preferred)
|
65 |
+
* Use SAME unique_id with suffixes:
|
66 |
+
- f"{{unique_id}}_1.png"
|
67 |
+
- f"{{unique_id}}_2.png"
|
68 |
+
- Save EXCLUSIVELY to "generated_charts" folder
|
69 |
+
- File naming: f"chart_{{unique_id}}.png" (for single chart)
|
70 |
+
4. FINAL OUTPUT MUST BE:
|
71 |
+
- For single chart: f"generated_charts/chart_{{unique_id}}.png"
|
72 |
+
- For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
|
73 |
+
- **ONLY return this full path string, nothing else**
|
74 |
+
|
75 |
+
**Query:** {question}
|
76 |
+
|
77 |
+
IMPORTANT:
|
78 |
+
- Generate the unique_id FIRST before any operations
|
79 |
+
- Use THE SAME unique_id throughout entire process
|
80 |
+
- NEVER generate new UUIDs after initial creation
|
81 |
+
- Return EXACT filepath string of the final saved chart
|
82 |
+
"""
|
83 |
|
|
|
84 |
if chart_required:
|
85 |
return ChatPromptTemplate.from_template(chart_prompt)
|
86 |
else:
|
87 |
return ChatPromptTemplate.from_template(chat_prompt)
|
88 |
|
89 |
def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
|
90 |
+
global current_instance_index
|
91 |
data = pd.read_csv(csv_url)
|
92 |
|
93 |
+
# Try all available instances
|
94 |
+
while current_instance_index < len(llm_instances):
|
|
|
95 |
try:
|
96 |
+
llm = llm_instances[current_instance_index]
|
97 |
+
print(f"Using LLM instance index {current_instance_index}")
|
|
|
|
|
98 |
|
99 |
# Create tool with validated name
|
100 |
tool = PythonAstREPLTool(
|
|
|
111 |
)
|
112 |
|
113 |
agent = create_agent(llm, data, [tool])
|
|
|
114 |
prompt = _prompt_generator(question, chart_required)
|
115 |
result = agent.invoke({"input": prompt})
|
116 |
+
output = result.get("output")
|
117 |
+
|
118 |
+
if output is None:
|
119 |
+
raise ValueError("Received None response from agent")
|
120 |
+
|
121 |
+
return output
|
122 |
|
123 |
except Exception as e:
|
124 |
+
print(f"Error using LLM instance index {current_instance_index}: {e}")
|
125 |
+
current_instance_index += 1
|
|
|
126 |
|
127 |
+
print("All LLM instances have been exhausted.")
|
128 |
return None
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# import os
|
144 |
+
# import re
|
145 |
+
# import uuid
|
146 |
+
# from langchain_google_genai import ChatGoogleGenerativeAI
|
147 |
+
# import pandas as pd
|
148 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
149 |
+
# from langchain_experimental.tools import PythonAstREPLTool
|
150 |
+
# from langchain_experimental.agents import create_pandas_dataframe_agent
|
151 |
+
# from dotenv import load_dotenv
|
152 |
+
# import numpy as np
|
153 |
+
# import matplotlib.pyplot as plt
|
154 |
+
# import matplotlib
|
155 |
+
# import seaborn as sns
|
156 |
+
# import datetime as dt
|
157 |
+
|
158 |
+
# # Set the backend for matplotlib to 'Agg' to avoid GUI issues
|
159 |
+
# matplotlib.use('Agg')
|
160 |
+
|
161 |
+
# load_dotenv()
|
162 |
+
# model_name = 'gemini-2.0-flash' # Specify the model name
|
163 |
+
# google_api_keys = os.getenv("GEMINI_API_KEYS").split(",")
|
164 |
+
|
165 |
+
# # Create pre-initialized LLM instances
|
166 |
+
# llm_instances = [
|
167 |
+
# ChatGoogleGenerativeAI(model=model_name, api_key=key)
|
168 |
+
# for key in google_api_keys
|
169 |
+
# ]
|
170 |
+
# current_instance_index = 0 # Track current instance being used
|
171 |
+
|
172 |
+
# def is_retryable_error(error: Exception) -> bool:
|
173 |
+
# """Check if the error should trigger a retry with next instance"""
|
174 |
+
# error_str = str(error).lower()
|
175 |
+
|
176 |
+
# retry_conditions = [
|
177 |
+
# # Rate limiting and quota errors
|
178 |
+
# '429' in error_str,
|
179 |
+
# 'quota' in error_str,
|
180 |
+
# 'rate limit' in error_str,
|
181 |
+
# 'resource exhausted' in error_str,
|
182 |
+
# 'exceeded' in error_str,
|
183 |
+
# 'limit reached' in error_str,
|
184 |
+
|
185 |
+
# # Authentication and permission errors
|
186 |
+
# 'permission denied' in error_str,
|
187 |
+
# 'invalid api key' in error_str,
|
188 |
+
# 'authentication' in error_str,
|
189 |
+
|
190 |
+
# # Server errors
|
191 |
+
# '500' in error_str,
|
192 |
+
# '503' in error_str,
|
193 |
+
# 'service unavailable' in error_str,
|
194 |
+
|
195 |
+
# # Connection issues
|
196 |
+
# 'timeout' in error_str,
|
197 |
+
# 'connection' in error_str,
|
198 |
+
|
199 |
+
# # Content policy
|
200 |
+
# 'content policy' in error_str,
|
201 |
+
# 'safety' in error_str,
|
202 |
+
# 'blocked' in error_str
|
203 |
+
# ]
|
204 |
+
|
205 |
+
# return any(retry_conditions)
|
206 |
+
|
207 |
+
# def create_agent(llm, data, tools):
|
208 |
+
# """Create agent with tool names"""
|
209 |
+
# return create_pandas_dataframe_agent(
|
210 |
+
# llm,
|
211 |
+
# data,
|
212 |
+
# agent_type="tool-calling",
|
213 |
+
# verbose=True,
|
214 |
+
# allow_dangerous_code=True,
|
215 |
+
# extra_tools=tools,
|
216 |
+
# return_intermediate_steps=True
|
217 |
+
# )
|
218 |
+
|
219 |
+
# def _prompt_generator(question: str, chart_required: bool):
|
220 |
+
# chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:
|
221 |
+
|
222 |
+
# 1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.
|
223 |
+
# 2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.
|
224 |
+
# 3. **Communication:** Provide concise, professional, and well-structured responses.
|
225 |
+
# 4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)
|
226 |
+
|
227 |
+
# **Query:** {question}
|
228 |
+
# """
|
229 |
+
|
230 |
+
# chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:
|
231 |
+
|
232 |
+
# 1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
|
233 |
+
# 2. Visualization requirements:
|
234 |
+
# - Adjust font sizes, rotate labels (45° if needed), truncate for readability
|
235 |
+
# - Figure size: (12, 6)
|
236 |
+
# - Descriptive titles (fontsize=14)
|
237 |
+
# - Colorblind-friendly palettes
|
238 |
+
# 3. File handling rules:
|
239 |
+
# - Create MAXIMUM 2 charts if absolutely necessary
|
240 |
+
# - For multiple charts:
|
241 |
+
# * Arrange in grid format (2x1 vertical layout preferred)
|
242 |
+
# * Use SAME unique_id with suffixes:
|
243 |
+
# - f"{{unique_id}}_1.png"
|
244 |
+
# - f"{{unique_id}}_2.png"
|
245 |
+
# - Save EXCLUSIVELY to "generated_charts" folder
|
246 |
+
# - File naming: f"chart_{{unique_id}}.png" (for single chart)
|
247 |
+
# 4. FINAL OUTPUT MUST BE:
|
248 |
+
# - For single chart: f"generated_charts/chart_{{unique_id}}.png"
|
249 |
+
# - For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
|
250 |
+
# - **ONLY return this full path string, nothing else**
|
251 |
+
|
252 |
+
# **Query:** {question}
|
253 |
+
|
254 |
+
# IMPORTANT:
|
255 |
+
# - Generate the unique_id FIRST before any operations
|
256 |
+
# - Use THE SAME unique_id throughout entire process
|
257 |
+
# - NEVER generate new UUIDs after initial creation
|
258 |
+
# - Return EXACT filepath string of the final saved chart
|
259 |
+
# """
|
260 |
+
|
261 |
+
# if chart_required:
|
262 |
+
# return ChatPromptTemplate.from_template(chart_prompt)
|
263 |
+
# else:
|
264 |
+
# return ChatPromptTemplate.from_template(chat_prompt)
|
265 |
+
|
266 |
+
# def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
|
267 |
+
# global current_instance_index
|
268 |
+
# data = pd.read_csv(csv_url)
|
269 |
+
|
270 |
+
# # Track first error in case all instances fail
|
271 |
+
# first_error = None
|
272 |
+
|
273 |
+
# while current_instance_index < len(llm_instances):
|
274 |
+
# try:
|
275 |
+
# llm = llm_instances[current_instance_index]
|
276 |
+
# print(f"Attempting with LLM instance {current_instance_index + 1}/{len(llm_instances)}")
|
277 |
+
|
278 |
+
# # Create tool with validated name
|
279 |
+
# tool = PythonAstREPLTool(
|
280 |
+
# locals={
|
281 |
+
# "df": data,
|
282 |
+
# "pd": pd,
|
283 |
+
# "np": np,
|
284 |
+
# "plt": plt,
|
285 |
+
# "sns": sns,
|
286 |
+
# "matplotlib": matplotlib,
|
287 |
+
# "uuid": uuid,
|
288 |
+
# "dt": dt
|
289 |
+
# },
|
290 |
+
# )
|
291 |
+
|
292 |
+
# agent = create_agent(llm, data, [tool])
|
293 |
+
# prompt = _prompt_generator(question, chart_required)
|
294 |
+
# result = agent.invoke({"input": prompt})
|
295 |
+
# output = result.get("output")
|
296 |
+
|
297 |
+
# if output is None:
|
298 |
+
# raise ValueError("Received None response from agent")
|
299 |
+
|
300 |
+
# if isinstance(output, str) and any(err in output.lower() for err in ['quota', 'limit', 'exhausted']):
|
301 |
+
# raise ValueError(f"API limitation detected in response: {output}")
|
302 |
+
|
303 |
+
# return output
|
304 |
+
|
305 |
+
# except Exception as e:
|
306 |
+
# error_msg = f"Error with instance {current_instance_index}: {str(e)}"
|
307 |
+
# print(error_msg)
|
308 |
+
|
309 |
+
# # Store first error if not set
|
310 |
+
# if first_error is None:
|
311 |
+
# first_error = error_msg
|
312 |
+
|
313 |
+
# # Check if we should try next instance
|
314 |
+
# if is_retryable_error(e):
|
315 |
+
# current_instance_index += 1
|
316 |
+
# continue
|
317 |
+
# else:
|
318 |
+
# # Non-retryable error - return immediately
|
319 |
+
# return {
|
320 |
+
# "error": "Non-retryable error occurred",
|
321 |
+
# "details": str(e),
|
322 |
+
# "instance": current_instance_index
|
323 |
+
# }
|
324 |
+
|
325 |
+
# # All instances exhausted
|
326 |
+
# error_response = {
|
327 |
+
# "error": "All API instances failed",
|
328 |
+
# "details": first_error or "Unknown error",
|
329 |
+
# "attempted_instances": current_instance_index
|
330 |
+
# }
|
331 |
+
# print(error_response)
|
332 |
+
# return error_response
|
gemini_report_generator.py
CHANGED
@@ -364,3 +364,413 @@ async def generate_csv_report(csv_url: str, query: str) -> FileBoxProps:
|
|
364 |
# result = gemini_llm_chat("./documents/enterprise_sales_data.csv",
|
365 |
# "Generate a detailed sales report of the last 6 months from all the aspects and include a bar chart showing the sales by region.")
|
366 |
# print(json.dumps(result, indent=2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
# result = gemini_llm_chat("./documents/enterprise_sales_data.csv",
|
365 |
# "Generate a detailed sales report of the last 6 months from all the aspects and include a bar chart showing the sales by region.")
|
366 |
# print(json.dumps(result, indent=2))
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
# import json
|
372 |
+
# import numpy as np
|
373 |
+
# import pandas as pd
|
374 |
+
# import re
|
375 |
+
# import os
|
376 |
+
# import uuid
|
377 |
+
# import logging
|
378 |
+
# from io import StringIO
|
379 |
+
# import sys
|
380 |
+
# import traceback
|
381 |
+
# from typing import Optional, Dict, Any, List, Tuple
|
382 |
+
# from pydantic import BaseModel, Field
|
383 |
+
# from google.api_core import exceptions as google_exceptions
|
384 |
+
# from google.generativeai import GenerativeModel, configure
|
385 |
+
# from dotenv import load_dotenv
|
386 |
+
# import seaborn as sns
|
387 |
+
# import datetime as dt
|
388 |
+
# from supabase_service import upload_file_to_supabase
|
389 |
+
|
390 |
+
# pd.set_option('display.max_columns', None)
|
391 |
+
# pd.set_option('display.max_rows', None)
|
392 |
+
# pd.set_option('display.max_colwidth', None)
|
393 |
+
|
394 |
+
# load_dotenv()
|
395 |
+
|
396 |
+
# API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")
|
397 |
+
# MODEL_NAME = 'gemini-2.0-flash'
|
398 |
+
|
399 |
+
# class FileProps(BaseModel):
|
400 |
+
# fileName: str
|
401 |
+
# filePath: str
|
402 |
+
# fileType: str # 'csv' | 'image'
|
403 |
+
|
404 |
+
# class Files(BaseModel):
|
405 |
+
# csv_files: List[FileProps]
|
406 |
+
# image_files: List[FileProps]
|
407 |
+
|
408 |
+
# class FileBoxProps(BaseModel):
|
409 |
+
# files: Files
|
410 |
+
|
411 |
+
# os.environ['MPLBACKEND'] = 'agg'
|
412 |
+
# import matplotlib.pyplot as plt
|
413 |
+
# plt.show = lambda: None
|
414 |
+
|
415 |
+
# logging.basicConfig(
|
416 |
+
# level=logging.INFO,
|
417 |
+
# format='%(asctime)s - %(levelname)s - %(message)s'
|
418 |
+
# )
|
419 |
+
# logger = logging.getLogger(__name__)
|
420 |
+
|
421 |
+
# class GeminiInstance:
|
422 |
+
# """Wrapper for a single Gemini API instance"""
|
423 |
+
|
424 |
+
# def __init__(self, api_key: str):
|
425 |
+
# self.api_key = api_key
|
426 |
+
# self.model = None
|
427 |
+
# self.active = False
|
428 |
+
# self.failure_count = 0
|
429 |
+
# self.last_error = None
|
430 |
+
|
431 |
+
# def initialize(self) -> bool:
|
432 |
+
# try:
|
433 |
+
# configure(api_key=self.api_key)
|
434 |
+
# self.model = GenerativeModel(MODEL_NAME)
|
435 |
+
# self.active = True
|
436 |
+
# logger.info(f"Initialized Gemini instance with key: {self._mask_key()}")
|
437 |
+
# return True
|
438 |
+
# except Exception as e:
|
439 |
+
# self.last_error = str(e)
|
440 |
+
# self.failure_count += 1
|
441 |
+
# logger.error(f"Failed to initialize Gemini instance: {self._mask_key()}. Error: {str(e)}")
|
442 |
+
# return False
|
443 |
+
|
444 |
+
# def _mask_key(self) -> str:
|
445 |
+
# return f"{self.api_key[:8]}...{self.api_key[-4:]}" if self.api_key else "None"
|
446 |
+
|
447 |
+
# def generate_content(self, prompt: str) -> Tuple[Optional[str], Optional[Exception]]:
|
448 |
+
# try:
|
449 |
+
# response = self.model.generate_content(prompt)
|
450 |
+
# return response.text, None
|
451 |
+
# except Exception as e:
|
452 |
+
# self.last_error = str(e)
|
453 |
+
# self.failure_count += 1
|
454 |
+
# return None, e
|
455 |
+
|
456 |
+
# class GeminiPool:
|
457 |
+
# """Pool of Gemini API instances with automatic failover"""
|
458 |
+
|
459 |
+
# def __init__(self, api_keys: List[str]):
|
460 |
+
# self.instances = [GeminiInstance(key) for key in api_keys]
|
461 |
+
# self.current_index = 0
|
462 |
+
# self.total_attempts = 0
|
463 |
+
|
464 |
+
# def get_active_instance(self) -> Optional[GeminiInstance]:
|
465 |
+
# """Get next available instance with automatic rotation"""
|
466 |
+
# if not self.instances:
|
467 |
+
# return None
|
468 |
+
|
469 |
+
# for _ in range(len(self.instances)):
|
470 |
+
# instance = self.instances[self.current_index]
|
471 |
+
# self.current_index = (self.current_index + 1) % len(self.instances)
|
472 |
+
# self.total_attempts += 1
|
473 |
+
|
474 |
+
# if instance.active or instance.initialize():
|
475 |
+
# return instance
|
476 |
+
|
477 |
+
# return None
|
478 |
+
|
479 |
+
# def should_retry(self, error: Exception) -> bool:
|
480 |
+
# """Determine if the error is retryable"""
|
481 |
+
# if isinstance(error, google_exceptions.ResourceExhausted):
|
482 |
+
# return True
|
483 |
+
# if isinstance(error, google_exceptions.TooManyRequests):
|
484 |
+
# return True
|
485 |
+
# if isinstance(error, google_exceptions.ServiceUnavailable):
|
486 |
+
# return True
|
487 |
+
|
488 |
+
# error_str = str(error).lower()
|
489 |
+
# retry_phrases = [
|
490 |
+
# 'quota',
|
491 |
+
# 'limit',
|
492 |
+
# 'exhausted',
|
493 |
+
# 'retry',
|
494 |
+
# 'unavailable',
|
495 |
+
# 'overloaded',
|
496 |
+
# '429',
|
497 |
+
# '503'
|
498 |
+
# ]
|
499 |
+
# return any(phrase in error_str for phrase in retry_phrases)
|
500 |
+
|
501 |
+
# class PythonREPL:
|
502 |
+
# """Secure Python REPL with file generation tracking"""
|
503 |
+
|
504 |
+
# def __init__(self, df: pd.DataFrame):
|
505 |
+
# self.df = df
|
506 |
+
# self.output_dir = os.path.abspath(f'generated_outputs/{uuid.uuid4()}')
|
507 |
+
# os.makedirs(self.output_dir, exist_ok=True)
|
508 |
+
# self.local_env = {
|
509 |
+
# "pd": pd,
|
510 |
+
# "df": self.df.copy(),
|
511 |
+
# "plt": plt,
|
512 |
+
# "os": os,
|
513 |
+
# "uuid": uuid,
|
514 |
+
# "sns": sns,
|
515 |
+
# "json": json,
|
516 |
+
# "dt": dt,
|
517 |
+
# "output_dir": self.output_dir
|
518 |
+
# }
|
519 |
+
|
520 |
+
# def execute(self, code: str) -> Dict[str, Any]:
|
521 |
+
# old_stdout = sys.stdout
|
522 |
+
# sys.stdout = mystdout = StringIO()
|
523 |
+
# file_tracker = {
|
524 |
+
# 'csv_files': set(),
|
525 |
+
# 'image_files': set()
|
526 |
+
# }
|
527 |
+
|
528 |
+
# try:
|
529 |
+
# code = f"""
|
530 |
+
# import matplotlib.pyplot as plt
|
531 |
+
# plt.switch_backend('agg')
|
532 |
+
# {code}
|
533 |
+
# plt.close('all')
|
534 |
+
# """
|
535 |
+
# exec(code, self.local_env)
|
536 |
+
# self.df = self.local_env.get('df', self.df)
|
537 |
+
|
538 |
+
# # Track generated files
|
539 |
+
# for fname in os.listdir(self.output_dir):
|
540 |
+
# if fname.endswith('.csv'):
|
541 |
+
# file_tracker['csv_files'].add(fname)
|
542 |
+
# elif fname.lower().endswith(('.png', '.jpg', '.jpeg')):
|
543 |
+
# file_tracker['image_files'].add(fname)
|
544 |
+
|
545 |
+
# error = False
|
546 |
+
# error_msg = None
|
547 |
+
# except Exception as e:
|
548 |
+
# error_msg = traceback.format_exc()
|
549 |
+
# error = True
|
550 |
+
# finally:
|
551 |
+
# sys.stdout = old_stdout
|
552 |
+
|
553 |
+
# return {
|
554 |
+
# "output": mystdout.getvalue(),
|
555 |
+
# "error": error,
|
556 |
+
# "error_message": error_msg if error else None,
|
557 |
+
# "df": self.local_env.get('df', self.df),
|
558 |
+
# "output_dir": self.output_dir,
|
559 |
+
# "files": {
|
560 |
+
# "csv": [os.path.join(self.output_dir, f) for f in file_tracker['csv_files']],
|
561 |
+
# "images": [os.path.join(self.output_dir, f) for f in file_tracker['image_files']]
|
562 |
+
# }
|
563 |
+
# }
|
564 |
+
|
565 |
+
# class RethinkAgent(BaseModel):
|
566 |
+
# df: pd.DataFrame
|
567 |
+
# max_retries: int = Field(default=5, ge=1)
|
568 |
+
# current_retry: int = Field(default=0, ge=0)
|
569 |
+
# repl: Optional[PythonREPL] = None
|
570 |
+
# gemini_pool: Optional[GeminiPool] = None
|
571 |
+
|
572 |
+
# class Config:
|
573 |
+
# arbitrary_types_allowed = True
|
574 |
+
|
575 |
+
# def _extract_code(self, response: str) -> str:
|
576 |
+
# code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
|
577 |
+
# return code_match.group(1).strip() if code_match else response.strip()
|
578 |
+
|
579 |
+
# def _generate_initial_prompt(self, query: str) -> str:
|
580 |
+
# return f"""Generate DIRECT EXECUTION CODE (no functions, no explanations) following STRICT RULES:
|
581 |
+
|
582 |
+
# MANDATORY REQUIREMENTS:
|
583 |
+
# 1. Operate directly on existing 'df' variable
|
584 |
+
# 2. Save ALL final DataFrames to CSV using: df.to_csv(f'{{output_dir}}/descriptive_name.csv')
|
585 |
+
# 3. For visualizations: plt.savefig(f'{{output_dir}}/chart_name.png')
|
586 |
+
# 4. Use EXACTLY this structure:
|
587 |
+
# # Data processing
|
588 |
+
# df_processed = df[...] # filtering/grouping
|
589 |
+
# # Save results
|
590 |
+
# df_processed.to_csv(f'{{output_dir}}/result.csv')
|
591 |
+
# # Visualizations (if needed)
|
592 |
+
# plt.figure()
|
593 |
+
# ... plotting code ...
|
594 |
+
# plt.savefig(f'{{output_dir}}/chart.png')
|
595 |
+
# plt.close()
|
596 |
+
|
597 |
+
# FORBIDDEN:
|
598 |
+
# - Function definitions
|
599 |
+
# - Dummy data creation
|
600 |
+
# - Any code blocks besides pandas operations and matplotlib
|
601 |
+
# - Print statements showing dataframes
|
602 |
+
|
603 |
+
# DATAFRAME COLUMNS: {', '.join(self.df.columns)}
|
604 |
+
# DATAFRAME'S FIRST FIVE ROWS: {self.df.head().to_dict('records')}
|
605 |
+
# USER QUERY: {query}
|
606 |
+
|
607 |
+
# EXAMPLE RESPONSE FOR "Sales by region":
|
608 |
+
# # Data processing
|
609 |
+
# sales_by_region = df.groupby('region')['sales'].sum().reset_index()
|
610 |
+
# # Save results
|
611 |
+
# sales_by_region.to_csv(f'{{output_dir}}/sales_by_region.csv')
|
612 |
+
# """
|
613 |
+
|
614 |
+
# def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
|
615 |
+
# return f"""FIX THIS CODE (failed with: {error}) by STRICTLY FOLLOWING:
|
616 |
+
|
617 |
+
# 1. REMOVE ALL FUNCTION DEFINITIONS
|
618 |
+
# 2. ENSURE DIRECT DF OPERATIONS
|
619 |
+
# 3. USE EXPLICIT output_dir PATHS
|
620 |
+
# 4. ADD NECESSARY IMPORTS IF MISSING
|
621 |
+
# 5. VALIDATE COLUMN NAMES EXIST
|
622 |
+
|
623 |
+
# BAD CODE:
|
624 |
+
# {code}
|
625 |
+
|
626 |
+
# CORRECTED CODE:"""
|
627 |
+
|
628 |
+
# def initialize_pool(self) -> bool:
|
629 |
+
# self.gemini_pool = GeminiPool(API_KEYS)
|
630 |
+
# return True
|
631 |
+
|
632 |
+
# def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
|
633 |
+
# prompt = self._generate_retry_prompt(query, error, previous_code) if error else self._generate_initial_prompt(query)
|
634 |
+
|
635 |
+
# instance = self.gemini_pool.get_active_instance()
|
636 |
+
# if not instance:
|
637 |
+
# raise RuntimeError("No available Gemini instances")
|
638 |
+
|
639 |
+
# response_text, error = instance.generate_content(prompt)
|
640 |
+
|
641 |
+
# if error:
|
642 |
+
# if self.gemini_pool.should_retry(error):
|
643 |
+
# logger.warning(f"Retryable error from Gemini: {str(error)}")
|
644 |
+
# return self.generate_code(query, error, previous_code)
|
645 |
+
# raise error
|
646 |
+
|
647 |
+
# return self._extract_code(response_text)
|
648 |
+
|
649 |
+
# def execute_query(self, query: str) -> Dict[str, Any]:
|
650 |
+
# self.repl = PythonREPL(self.df)
|
651 |
+
# result = None
|
652 |
+
|
653 |
+
# while self.current_retry < self.max_retries:
|
654 |
+
# try:
|
655 |
+
# code = self.generate_code(query,
|
656 |
+
# result["error_message"] if result else None,
|
657 |
+
# result["code"] if result else None)
|
658 |
+
# execution_result = self.repl.execute(code)
|
659 |
+
|
660 |
+
# if execution_result["error"]:
|
661 |
+
# self.current_retry += 1
|
662 |
+
# result = {
|
663 |
+
# "error_message": execution_result["error_message"],
|
664 |
+
# "code": code
|
665 |
+
# }
|
666 |
+
# else:
|
667 |
+
# return {
|
668 |
+
# "text": execution_result["output"],
|
669 |
+
# "csv_files": execution_result["files"]["csv"],
|
670 |
+
# "image_files": execution_result["files"]["images"]
|
671 |
+
# }
|
672 |
+
# except Exception as e:
|
673 |
+
# return {
|
674 |
+
# "error": f"Critical failure: {str(e)}",
|
675 |
+
# "csv_files": [],
|
676 |
+
# "image_files": []
|
677 |
+
# }
|
678 |
+
|
679 |
+
# return {
|
680 |
+
# "error": f"Failed after {self.max_retries} retries",
|
681 |
+
# "csv_files": [],
|
682 |
+
# "image_files": []
|
683 |
+
# }
|
684 |
+
|
685 |
+
# def gemini_llm_chat(csv_url: str, query: str) -> Dict[str, Any]:
|
686 |
+
# try:
|
687 |
+
# df = pd.read_csv(csv_url)
|
688 |
+
# agent = RethinkAgent(df=df)
|
689 |
+
|
690 |
+
# if not agent.initialize_pool():
|
691 |
+
# return {"error": "API pool initialization failed"}
|
692 |
+
|
693 |
+
# result = agent.execute_query(query)
|
694 |
+
|
695 |
+
# if "error" in result:
|
696 |
+
# return result
|
697 |
+
|
698 |
+
# return {
|
699 |
+
# "message": result["text"],
|
700 |
+
# "csv_files": result["csv_files"],
|
701 |
+
# "image_files": result["image_files"]
|
702 |
+
# }
|
703 |
+
# except Exception as e:
|
704 |
+
# logger.error(f"Processing failed: {str(e)}", exc_info=True)
|
705 |
+
# return {
|
706 |
+
# "error": f"Processing error: {str(e)}",
|
707 |
+
# "csv_files": [],
|
708 |
+
# "image_files": []
|
709 |
+
# }
|
710 |
+
|
711 |
+
# async def generate_csv_report(csv_url: str, query: str) -> FileBoxProps:
|
712 |
+
# try:
|
713 |
+
# result = gemini_llm_chat(csv_url, query)
|
714 |
+
# logger.info(f"Raw result from gemini_llm_chat: {result}")
|
715 |
+
|
716 |
+
# csv_files = []
|
717 |
+
# image_files = []
|
718 |
+
|
719 |
+
# if isinstance(result, dict) and 'csv_files' in result and 'image_files' in result:
|
720 |
+
# # Process CSV files
|
721 |
+
# for csv_path in result['csv_files']:
|
722 |
+
# if os.path.exists(csv_path):
|
723 |
+
# file_name = os.path.basename(csv_path)
|
724 |
+
# try:
|
725 |
+
# unique_file_name = f"{uuid.uuid4()}_{file_name}"
|
726 |
+
# public_url = await upload_file_to_supabase(
|
727 |
+
# file_path=csv_path,
|
728 |
+
# file_name=unique_file_name
|
729 |
+
# )
|
730 |
+
# csv_files.append(FileProps(
|
731 |
+
# fileName=file_name,
|
732 |
+
# filePath=public_url,
|
733 |
+
# fileType="csv"
|
734 |
+
# ))
|
735 |
+
# os.remove(csv_path)
|
736 |
+
# except Exception as upload_error:
|
737 |
+
# logger.error(f"Failed to upload CSV {file_name}: {str(upload_error)}")
|
738 |
+
# continue
|
739 |
+
|
740 |
+
# # Process image files
|
741 |
+
# for img_path in result['image_files']:
|
742 |
+
# if os.path.exists(img_path):
|
743 |
+
# file_name = os.path.basename(img_path)
|
744 |
+
# try:
|
745 |
+
# unique_file_name = f"{uuid.uuid4()}_{file_name}"
|
746 |
+
# public_url = await upload_file_to_supabase(
|
747 |
+
# file_path=img_path,
|
748 |
+
# file_name=unique_file_name
|
749 |
+
# )
|
750 |
+
# image_files.append(FileProps(
|
751 |
+
# fileName=file_name,
|
752 |
+
# filePath=public_url,
|
753 |
+
# fileType="image"
|
754 |
+
# ))
|
755 |
+
# os.remove(img_path)
|
756 |
+
# except Exception as upload_error:
|
757 |
+
# logger.error(f"Failed to upload image {file_name}: {str(upload_error)}")
|
758 |
+
# continue
|
759 |
+
|
760 |
+
# return FileBoxProps(
|
761 |
+
# files=Files(
|
762 |
+
# csv_files=csv_files,
|
763 |
+
# image_files=image_files
|
764 |
+
# )
|
765 |
+
# )
|
766 |
+
# else:
|
767 |
+
# raise ValueError("Unexpected response format from gemini_llm_chat")
|
768 |
+
|
769 |
+
# except Exception as e:
|
770 |
+
# logger.error(f"Report generation failed: {str(e)}", exc_info=True)
|
771 |
+
# return FileBoxProps(
|
772 |
+
# files=Files(
|
773 |
+
# csv_files=[],
|
774 |
+
# image_files=[]
|
775 |
+
# )
|
776 |
+
# )
|
groq_chart.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from util_service import process_answer
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
import uuid
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
import pandas as pd
|
8 |
+
from pandasai import SmartDataframe
|
9 |
+
import numpy as np
|
10 |
+
import logging
|
11 |
+
from csv_service import clean_data
|
12 |
+
from util_service import handle_out_of_range_float
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Thread-safe key management for langchain_csv_chat
|
17 |
+
current_langchain_key_index = 0
|
18 |
+
current_langchain_key_lock = threading.Lock()
|
19 |
+
|
20 |
+
# Load environment variables
|
21 |
+
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
|
22 |
+
model_name = os.getenv("GROQ_LLM_MODEL")
|
23 |
+
|
24 |
+
# Set up logging
|
25 |
+
logging.basicConfig(level=logging.INFO)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
instructions = """
|
30 |
+
|
31 |
+
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
32 |
+
- For multiple charts, arrange them in a grid format (2x2, 3x3, etc.)
|
33 |
+
- Use colorblind-friendly palette
|
34 |
+
- Read above instructions and follow them.
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Thread-safe configuration for chart endpoints
|
39 |
+
current_groq_chart_key_index = 0
|
40 |
+
current_groq_chart_lock = threading.Lock()
|
41 |
+
|
42 |
+
def model():
|
43 |
+
global current_groq_chart_key_index, current_groq_chart_lock
|
44 |
+
with current_groq_chart_lock:
|
45 |
+
if current_groq_chart_key_index >= len(groq_api_keys):
|
46 |
+
raise Exception("All API keys exhausted for chart generation")
|
47 |
+
api_key = groq_api_keys[current_groq_chart_key_index]
|
48 |
+
return ChatGroq(model=model_name, api_key=api_key)
|
49 |
+
|
50 |
+
def groq_chart(csv_url: str, question: str):
|
51 |
+
global current_groq_chart_key_index, current_groq_chart_lock
|
52 |
+
|
53 |
+
for attempt in range(len(groq_api_keys)):
|
54 |
+
try:
|
55 |
+
# Clean cache before processing
|
56 |
+
cache_db_path = "/workspace/cache/cache_db_0.11.db"
|
57 |
+
if os.path.exists(cache_db_path):
|
58 |
+
try:
|
59 |
+
os.remove(cache_db_path)
|
60 |
+
except Exception as e:
|
61 |
+
logger.info(f"Cache cleanup error: {e}")
|
62 |
+
|
63 |
+
data = clean_data(csv_url)
|
64 |
+
with current_groq_chart_lock:
|
65 |
+
current_api_key = groq_api_keys[current_groq_chart_key_index]
|
66 |
+
|
67 |
+
llm = ChatGroq(model=model_name, api_key=current_api_key)
|
68 |
+
|
69 |
+
# Generate unique filename using UUID
|
70 |
+
chart_filename = f"chart_{uuid.uuid4()}.png"
|
71 |
+
chart_path = os.path.join("generated_charts", chart_filename)
|
72 |
+
|
73 |
+
# Configure SmartDataframe with chart settings
|
74 |
+
df = SmartDataframe(
|
75 |
+
data,
|
76 |
+
config={
|
77 |
+
'llm': llm,
|
78 |
+
'save_charts': True, # Enable chart saving
|
79 |
+
'open_charts': False,
|
80 |
+
'save_charts_path': os.path.dirname(chart_path), # Directory to save
|
81 |
+
'custom_chart_filename': chart_filename # Unique filename
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
answer = df.chat(question + instructions)
|
86 |
+
|
87 |
+
if process_answer(answer):
|
88 |
+
return "Chart not generated"
|
89 |
+
return answer
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
error = str(e)
|
93 |
+
if "429" in error:
|
94 |
+
with current_groq_chart_lock:
|
95 |
+
current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
|
96 |
+
else:
|
97 |
+
logger.info(f"Chart generation error: {error}")
|
98 |
+
return {"error": error}
|
99 |
+
|
100 |
+
logger.info("All API keys exhausted for chart generation")
|
101 |
+
return None
|
groq_chat.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import threading
|
3 |
+
import uuid
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
import pandas as pd
|
7 |
+
from pandasai import SmartDataframe
|
8 |
+
import numpy as np
|
9 |
+
import logging
|
10 |
+
from csv_service import clean_data
|
11 |
+
from util_service import handle_out_of_range_float
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Thread-safe key management for langchain_csv_chat
|
16 |
+
current_groq_key_index = 0
|
17 |
+
current_groq_key_lock = threading.Lock()
|
18 |
+
|
19 |
+
# Load environment variables
|
20 |
+
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
|
21 |
+
model_name = os.getenv("GROQ_LLM_MODEL")
|
22 |
+
|
23 |
+
# Set up logging
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
def groq_chat(csv_url: str, question: str):
|
28 |
+
global current_groq_key_index, current_groq_key_lock
|
29 |
+
|
30 |
+
while True:
|
31 |
+
with current_groq_key_lock:
|
32 |
+
if current_groq_key_index >= len(groq_api_keys):
|
33 |
+
return {"error": "All API keys exhausted."}
|
34 |
+
current_api_key = groq_api_keys[current_groq_key_index]
|
35 |
+
|
36 |
+
try:
|
37 |
+
# Delete cache file if exists
|
38 |
+
cache_db_path = "/workspace/cache/cache_db_0.11.db"
|
39 |
+
if os.path.exists(cache_db_path):
|
40 |
+
try:
|
41 |
+
os.remove(cache_db_path)
|
42 |
+
except Exception as e:
|
43 |
+
logger.info(f"Error deleting cache DB file: {e}")
|
44 |
+
|
45 |
+
data = clean_data(csv_url)
|
46 |
+
llm = ChatGroq(model=model_name, api_key=current_api_key)
|
47 |
+
# Generate unique filename using UUID
|
48 |
+
chart_filename = f"chart_{uuid.uuid4()}.png"
|
49 |
+
chart_path = os.path.join("generated_charts", chart_filename)
|
50 |
+
|
51 |
+
# Configure SmartDataframe with chart settings
|
52 |
+
df = SmartDataframe(
|
53 |
+
data,
|
54 |
+
config={
|
55 |
+
'llm': llm,
|
56 |
+
'save_charts': True, # Enable chart saving
|
57 |
+
'open_charts': False,
|
58 |
+
'save_charts_path': os.path.dirname(chart_path), # Directory to save
|
59 |
+
'custom_chart_filename': chart_filename # Unique filename
|
60 |
+
}
|
61 |
+
)
|
62 |
+
|
63 |
+
answer = df.chat(question)
|
64 |
+
|
65 |
+
# Process different response types
|
66 |
+
if isinstance(answer, pd.DataFrame):
|
67 |
+
processed = answer.apply(handle_out_of_range_float).to_dict(orient="records")
|
68 |
+
elif isinstance(answer, pd.Series):
|
69 |
+
processed = answer.apply(handle_out_of_range_float).to_dict()
|
70 |
+
elif isinstance(answer, list):
|
71 |
+
processed = [handle_out_of_range_float(item) for item in answer]
|
72 |
+
elif isinstance(answer, dict):
|
73 |
+
processed = {k: handle_out_of_range_float(v) for k, v in answer.items()}
|
74 |
+
else:
|
75 |
+
processed = {"answer": str(handle_out_of_range_float(answer))}
|
76 |
+
|
77 |
+
return processed
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
error_message = str(e)
|
81 |
+
if "429" in error_message:
|
82 |
+
with current_groq_key_lock:
|
83 |
+
current_groq_key_index += 1
|
84 |
+
if current_groq_key_index >= len(groq_api_keys):
|
85 |
+
logger.info("All API keys exhausted.")
|
86 |
+
return None
|
87 |
+
else:
|
88 |
+
logger.info(f"Error with API key index {current_groq_key_index}: {error_message}")
|
89 |
+
return None
|
lc_groq_chart.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
import uuid
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from csv_service import clean_data, extract_chart_filenames
|
12 |
+
from langchain_experimental.tools import PythonAstREPLTool
|
13 |
+
from langchain_experimental.agents import create_pandas_dataframe_agent
|
14 |
+
from util_service import _prompt_generator
|
15 |
+
import seaborn as sns
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
# Thread-safe key management for langchain_csv_chat
|
20 |
+
current_langchain_key_index = 0
|
21 |
+
current_langchain_key_lock = threading.Lock()
|
22 |
+
|
23 |
+
# Load environment variables
|
24 |
+
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
|
25 |
+
model_name = os.getenv("GROQ_LLM_MODEL")
|
26 |
+
|
27 |
+
# Set up logging
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
current_langchain_chart_key_index = 0
|
32 |
+
current_langchain_chart_lock = threading.Lock()
|
33 |
+
|
34 |
+
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
|
35 |
+
global current_langchain_chart_key_index, current_langchain_chart_lock
|
36 |
+
|
37 |
+
data = clean_data(csv_url)
|
38 |
+
|
39 |
+
for attempt in range(len(groq_api_keys)):
|
40 |
+
try:
|
41 |
+
with current_langchain_chart_lock:
|
42 |
+
api_key = groq_api_keys[current_langchain_chart_key_index]
|
43 |
+
current_key = current_langchain_chart_key_index
|
44 |
+
current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)
|
45 |
+
|
46 |
+
llm = ChatGroq(model=model_name, api_key=api_key)
|
47 |
+
tool = PythonAstREPLTool(locals={
|
48 |
+
"df": data,
|
49 |
+
"pd": pd,
|
50 |
+
"np": np,
|
51 |
+
"plt": plt,
|
52 |
+
"sns": sns,
|
53 |
+
"matplotlib": matplotlib,
|
54 |
+
"uuid": uuid
|
55 |
+
})
|
56 |
+
|
57 |
+
agent = create_pandas_dataframe_agent(
|
58 |
+
llm,
|
59 |
+
data,
|
60 |
+
agent_type="tool-calling",
|
61 |
+
verbose=True,
|
62 |
+
allow_dangerous_code=True,
|
63 |
+
extra_tools=[tool],
|
64 |
+
return_intermediate_steps=True
|
65 |
+
)
|
66 |
+
|
67 |
+
result = agent.invoke({"input": _prompt_generator(f"{question} and use this csv_url: {csv_url} to read the csv file", True)})
|
68 |
+
output = result.get("output", "")
|
69 |
+
|
70 |
+
# Verify chart file creation
|
71 |
+
chart_files = extract_chart_filenames(output)
|
72 |
+
if len(chart_files) > 0:
|
73 |
+
return chart_files
|
74 |
+
|
75 |
+
if attempt < len(groq_api_keys) - 1:
|
76 |
+
logger.info(f"Langchain chart error (key {current_key}): {output}")
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
logger.info(f"Langchain chart error (key {current_key}): {str(e)}")
|
80 |
+
|
81 |
+
logger.info("All API keys exhausted for chart generation")
|
82 |
+
return None
|
lc_groq_chat.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
import matplotlib
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from csv_service import clean_data
|
11 |
+
import seaborn as sns
|
12 |
+
from langchain_experimental.tools import PythonAstREPLTool
|
13 |
+
from langchain_experimental.agents import create_pandas_dataframe_agent
|
14 |
+
from util_service import _prompt_generator
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Thread-safe key management for langchain_csv_chat
|
19 |
+
current_langchain_key_index = 0
|
20 |
+
current_langchain_key_lock = threading.Lock()
|
21 |
+
|
22 |
+
# Load environment variables
|
23 |
+
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
|
24 |
+
model_name = os.getenv("GROQ_LLM_MODEL")
|
25 |
+
|
26 |
+
# Set up logging
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
def langchain_csv_chat(csv_url: str, question: str, chart_required: bool):
|
31 |
+
global current_langchain_key_index, current_langchain_key_lock
|
32 |
+
|
33 |
+
data = clean_data(csv_url)
|
34 |
+
attempts = 0
|
35 |
+
|
36 |
+
while attempts < len(groq_api_keys):
|
37 |
+
with current_langchain_key_lock:
|
38 |
+
if current_langchain_key_index >= len(groq_api_keys):
|
39 |
+
current_langchain_key_index = 0
|
40 |
+
api_key = groq_api_keys[current_langchain_key_index]
|
41 |
+
current_key = current_langchain_key_index
|
42 |
+
current_langchain_key_index += 1
|
43 |
+
attempts += 1
|
44 |
+
|
45 |
+
try:
|
46 |
+
llm = ChatGroq(model=model_name, api_key=api_key)
|
47 |
+
tool = PythonAstREPLTool(locals={
|
48 |
+
"df": data,
|
49 |
+
"pd": pd,
|
50 |
+
"np": np,
|
51 |
+
"plt": plt,
|
52 |
+
"sns": sns,
|
53 |
+
"matplotlib": matplotlib
|
54 |
+
})
|
55 |
+
|
56 |
+
agent = create_pandas_dataframe_agent(
|
57 |
+
llm,
|
58 |
+
data,
|
59 |
+
agent_type="tool-calling",
|
60 |
+
verbose=True,
|
61 |
+
allow_dangerous_code=True,
|
62 |
+
extra_tools=[tool],
|
63 |
+
return_intermediate_steps=True
|
64 |
+
)
|
65 |
+
|
66 |
+
prompt = _prompt_generator(question, chart_required)
|
67 |
+
result = agent.invoke({"input": prompt})
|
68 |
+
return result.get("output")
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
logger.info(f"Error with key index {current_key}: {str(e)}")
|
72 |
+
|
73 |
+
# If all keys are exhausted, return None
|
74 |
+
logger.info("All API keys have been exhausted.")
|
75 |
+
return None
|
orchestrator_agent.py
CHANGED
@@ -142,51 +142,6 @@ def create_agent(csv_url: str, api_key: str, conversation_history: List) -> Agen
|
|
142 |
5. Offer next-step suggestions
|
143 |
"""
|
144 |
|
145 |
-
# system_prompt = (
|
146 |
-
# "You are a data analyst. "
|
147 |
-
# "You have all the tools you need to answer any question. "
|
148 |
-
# "If the user asks for multiple answers or charts, break the question into several well-defined questions. "
|
149 |
-
# "Pass the CSV URL or file path along with the questions to the tools to generate the answer. "
|
150 |
-
# "The tools are actually LLMs with Python code execution capabilities. "
|
151 |
-
# "Modify the query if needed to make it simpler for the LLM to understand. "
|
152 |
-
# "Answer in a friendly and helpful manner. "
|
153 |
-
# "**Format images** in Markdown: ``. "
|
154 |
-
# f"Your CSV URL is {csv_url}. "
|
155 |
-
# f"Your CSV metadata is {csv_metadata}."
|
156 |
-
# )
|
157 |
-
|
158 |
-
|
159 |
-
# system_prompt = (
|
160 |
-
# "You are a data analyst assistant with limited tool capabilities. "
|
161 |
-
# "Available tools can only handle simple data queries: "
|
162 |
-
# "- Count rows/columns\n- Calculate basic stats (avg, sum, min/max)\n"
|
163 |
-
# "- Create simple visualizations (pie charts, bar graphs)\n"
|
164 |
-
# "- Show column names/types\n\n"
|
165 |
-
|
166 |
-
# "Query Handling Rules:\n"
|
167 |
-
# "1. If query is complex, ambiguous, or exceeds tool capabilities:\n"
|
168 |
-
# " - Break into simpler sub-questions\n"
|
169 |
-
# " - Ask for clarification\n"
|
170 |
-
# " - Rephrase to nearest simple query\n"
|
171 |
-
# "2. For 'full report' requests:\n"
|
172 |
-
# " - Outline possible analysis steps\n"
|
173 |
-
# " - Ask user to select one component at a time\n\n"
|
174 |
-
|
175 |
-
# "Examples:\n"
|
176 |
-
# "- Bad query: 'Show me everything'\n"
|
177 |
-
# " Response: 'I can show row count (10), columns (5: Name, Age...), "
|
178 |
-
# "or a pie chart of categories. Which would you like?'\n"
|
179 |
-
# "- Bad query: 'Analyze trends'\n"
|
180 |
-
# " Response: 'For trend analysis, I can show monthly averages or "
|
181 |
-
# "year-over-year comparisons. Please specify time period and metric.'\n\n"
|
182 |
-
|
183 |
-
# "Current CSV Context:\n"
|
184 |
-
# f"- URL: {csv_url}\n"
|
185 |
-
# f"- Metadata: {csv_metadata}\n\n"
|
186 |
-
|
187 |
-
# "Always format images as: "
|
188 |
-
# )
|
189 |
-
|
190 |
return Agent(
|
191 |
model=initialize_model(api_key),
|
192 |
deps_type=str,
|
@@ -216,3 +171,149 @@ def csv_orchestrator_chat(csv_url: str, user_question: str, conversation_history
|
|
216 |
# If all keys are exhausted or fail
|
217 |
print("All API keys have been exhausted or failed.")
|
218 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
5. Offer next-step suggestions
|
143 |
"""
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
return Agent(
|
146 |
model=initialize_model(api_key),
|
147 |
deps_type=str,
|
|
|
171 |
# If all keys are exhausted or fail
|
172 |
print("All API keys have been exhausted or failed.")
|
173 |
return None
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
# import os
|
186 |
+
# from typing import Dict, List, Any
|
187 |
+
# from pydantic_ai import Agent
|
188 |
+
# from pydantic_ai.models.gemini import GeminiModel
|
189 |
+
# from pydantic_ai.providers.google_gla import GoogleGLAProvider
|
190 |
+
# from pydantic_ai import RunContext
|
191 |
+
# from pydantic import BaseModel
|
192 |
+
# from google.api_core.exceptions import ResourceExhausted
|
193 |
+
# from csv_service import get_csv_basic_info
|
194 |
+
# from orchestrator_functions import csv_chart, csv_chat
|
195 |
+
# from dotenv import load_dotenv
|
196 |
+
|
197 |
+
# load_dotenv()
|
198 |
+
|
199 |
+
# # Thread-safe key management
|
200 |
+
# current_gemini_key_index = 0
|
201 |
+
# GEMINI_API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")
|
202 |
+
|
203 |
+
# def initialize_model(api_key: str) -> GeminiModel:
|
204 |
+
# return GeminiModel(
|
205 |
+
# 'gemini-2.0-flash',
|
206 |
+
# provider=GoogleGLAProvider(api_key=api_key)
|
207 |
+
# )
|
208 |
+
|
209 |
+
# def is_resource_exhausted_error(result_or_exception) -> bool:
|
210 |
+
# """Check if the error indicates resource exhaustion"""
|
211 |
+
# error_str = str(result_or_exception).lower()
|
212 |
+
# return any(keyword in error_str for keyword in [
|
213 |
+
# "resource exhausted",
|
214 |
+
# "quota exceeded",
|
215 |
+
# "rate limit",
|
216 |
+
# "billing",
|
217 |
+
# "payment method",
|
218 |
+
# "plan.rule"
|
219 |
+
# ])
|
220 |
+
|
221 |
+
# async def generate_csv_answer(csv_url: str, user_questions: List[str]) -> Any:
|
222 |
+
# answers = []
|
223 |
+
# for question in user_questions:
|
224 |
+
# answer = await csv_chat(csv_url, question)
|
225 |
+
# answers.append(dict(question=question, answer=answer))
|
226 |
+
# return answers
|
227 |
+
|
228 |
+
# async def generate_chart(csv_url: str, user_questions: List[str]) -> Any:
|
229 |
+
# charts = []
|
230 |
+
# for question in user_questions:
|
231 |
+
# chart = await csv_chart(csv_url, question)
|
232 |
+
# charts.append(dict(question=question, image_url=chart))
|
233 |
+
# return charts
|
234 |
+
|
235 |
+
# def create_agent(csv_url: str, api_key: str, conversation_history: List) -> Agent:
|
236 |
+
# csv_metadata = get_csv_basic_info(csv_url)
|
237 |
+
|
238 |
+
# system_prompt = f"""
|
239 |
+
# # Role: Expert Data Analysis Assistant
|
240 |
+
# # Personality & Origin: You are exclusively the CSV Document Analysis Assistant, created by the chatcsvandpdf team. Your sole purpose is to assist users with CSV-related tasks—analyzing, interpreting, and processing data.
|
241 |
+
|
242 |
+
# ## Capabilities:
|
243 |
+
# - Break complex queries into simpler sub-tasks
|
244 |
+
|
245 |
+
# ## Instruction Framework:
|
246 |
+
# 1. QUERY PROCESSING:
|
247 |
+
# - If request contains multiple questions:
|
248 |
+
# a) Decompose into logical sub-questions
|
249 |
+
# b) Process sequentially
|
250 |
+
# c) Combine results coherently
|
251 |
+
|
252 |
+
# 2. DATA HANDLING:
|
253 |
+
# - Always verify CSV structure matches the request
|
254 |
+
# - Handle missing/ambiguous data by:
|
255 |
+
# a) Asking clarifying questions OR
|
256 |
+
# b) Making reasonable assumptions (state them clearly)
|
257 |
+
|
258 |
+
# 3. VISUALIZATION STANDARDS:
|
259 |
+
# - Format images as: ``
|
260 |
+
# - Include axis labels and titles
|
261 |
+
# - Use appropriate chart types
|
262 |
+
|
263 |
+
# 4. COMMUNICATION PROTOCOL:
|
264 |
+
# - Friendly, professional tone
|
265 |
+
# - Explain technical terms
|
266 |
+
# - Summarize key findings
|
267 |
+
# - Highlight limitations/caveats
|
268 |
+
|
269 |
+
# 5. TOOL USAGE:
|
270 |
+
# - Can process statistical operations
|
271 |
+
# - Supports visualization libraries
|
272 |
+
|
273 |
+
# ## Current Context:
|
274 |
+
# - Working with CSV_URL: {csv_url}
|
275 |
+
# - Dataset overview: {csv_metadata}
|
276 |
+
# - Your conversation history: {conversation_history}
|
277 |
+
# - Output format: Markdown compatible
|
278 |
+
# """
|
279 |
+
|
280 |
+
# return Agent(
|
281 |
+
# model=initialize_model(api_key),
|
282 |
+
# deps_type=str,
|
283 |
+
# tools=[generate_csv_answer, generate_chart],
|
284 |
+
# system_prompt=system_prompt
|
285 |
+
# )
|
286 |
+
|
287 |
+
# def csv_orchestrator_chat(csv_url: str, user_question: str, conversation_history: List) -> str:
|
288 |
+
# global current_gemini_key_index
|
289 |
+
|
290 |
+
# while current_gemini_key_index < len(GEMINI_API_KEYS):
|
291 |
+
# api_key = GEMINI_API_KEYS[current_gemini_key_index]
|
292 |
+
|
293 |
+
# try:
|
294 |
+
# print(f"Attempting with API key index {current_gemini_key_index}")
|
295 |
+
# agent = create_agent(csv_url, api_key, conversation_history)
|
296 |
+
# result = agent.run_sync(user_question)
|
297 |
+
|
298 |
+
# # Check if result indicates resource exhaustion
|
299 |
+
# if result.data and is_resource_exhausted_error(result.data):
|
300 |
+
# print(f"Resource exhausted in response for key {current_gemini_key_index}")
|
301 |
+
# current_gemini_key_index += 1
|
302 |
+
# continue
|
303 |
+
|
304 |
+
# return result.data
|
305 |
+
|
306 |
+
# except ResourceExhausted as e:
|
307 |
+
# print(f"Resource exhausted for API key {current_gemini_key_index}: {e}")
|
308 |
+
# current_gemini_key_index += 1
|
309 |
+
# continue
|
310 |
+
|
311 |
+
# except Exception as e:
|
312 |
+
# if is_resource_exhausted_error(e):
|
313 |
+
# print(f"Resource exhausted error detected for key {current_gemini_key_index}")
|
314 |
+
# current_gemini_key_index += 1
|
315 |
+
# continue
|
316 |
+
# print(f"Non-recoverable error with key {current_gemini_key_index}: {e}")
|
317 |
+
# return f"Error processing request: {str(e)}"
|
318 |
+
|
319 |
+
# return "All API keys have been exhausted. Please update billing information."
|
orchestrator_functions.py
CHANGED
@@ -612,7 +612,6 @@ async def csv_chart(csv_url: str, query: str):
|
|
612 |
|
613 |
except Exception as openai_error:
|
614 |
logger.info(f"OpenAI failed ({str(openai_error)}), trying raw Groq...")
|
615 |
-
return 'Sorry, I could not generate a chart...'
|
616 |
# --- 2. Second Attempt: Raw Groq ---
|
617 |
try:
|
618 |
groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
|
|
|
612 |
|
613 |
except Exception as openai_error:
|
614 |
logger.info(f"OpenAI failed ({str(openai_error)}), trying raw Groq...")
|
|
|
615 |
# --- 2. Second Attempt: Raw Groq ---
|
616 |
try:
|
617 |
groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
|