put middle orchestrator
Browse files- controller.py +17 -0
- orchestrator_agent.py +94 -0
- orchestrator_functions.py +381 -0
controller.py
CHANGED
@@ -26,6 +26,7 @@ import matplotlib.pyplot as plt
|
|
26 |
import matplotlib
|
27 |
import seaborn as sns
|
28 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
|
|
29 |
from supabase_service import upload_image_to_supabase
|
30 |
from util_service import _prompt_generator, process_answer
|
31 |
from fastapi.middleware.cors import CORSMiddleware
|
@@ -306,6 +307,14 @@ async def csv_chat(request: Dict, authorization: str = Header(None)):
|
|
306 |
)
|
307 |
logger.info("langchain_answer:", answer)
|
308 |
return {"answer": jsonable_encoder(answer)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
# Process with groq_chat first
|
311 |
groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
|
@@ -802,6 +811,14 @@ async def csv_chart(request: dict, authorization: str = Header(None)):
|
|
802 |
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
803 |
return {"image_url": image_public_url}
|
804 |
# return FileResponse(langchain_result[0], media_type="image/png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
805 |
|
806 |
# Next, try the groq-based method
|
807 |
groq_result = await loop.run_in_executor(
|
|
|
26 |
import matplotlib
|
27 |
import seaborn as sns
|
28 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
29 |
+
from orchestrator_agent import csv_orchestrator_chat
|
30 |
from supabase_service import upload_image_to_supabase
|
31 |
from util_service import _prompt_generator, process_answer
|
32 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
307 |
)
|
308 |
logger.info("langchain_answer:", answer)
|
309 |
return {"answer": jsonable_encoder(answer)}
|
310 |
+
|
311 |
+
# Orchestrate the execution
|
312 |
+
orchestrator_answer = await asyncio.to_thread(
|
313 |
+
csv_orchestrator_chat, decoded_url, query
|
314 |
+
)
|
315 |
+
|
316 |
+
if orchestrator_answer is not None:
|
317 |
+
return {"answer": jsonable_encoder(orchestrator_answer)}
|
318 |
|
319 |
# Process with groq_chat first
|
320 |
groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
|
|
|
811 |
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
812 |
return {"image_url": image_public_url}
|
813 |
# return FileResponse(langchain_result[0], media_type="image/png")
|
814 |
+
|
815 |
+
# Use orchestrator to handle the user's chart query first
|
816 |
+
orchestrator_answer = await asyncio.to_thread(
|
817 |
+
process_executor,csv_orchestrator_chat, csv_url, query
|
818 |
+
)
|
819 |
+
|
820 |
+
if orchestrator_answer is not None:
|
821 |
+
return {"orchestrator_response": jsonable_encoder(orchestrator_answer)}
|
822 |
|
823 |
# Next, try the groq-based method
|
824 |
groq_result = await loop.run_in_executor(
|
orchestrator_agent.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
from pydantic_ai import Agent
|
5 |
+
from pydantic_ai.models.gemini import GeminiModel
|
6 |
+
from pydantic_ai.providers.google_gla import GoogleGLAProvider
|
7 |
+
from pydantic_ai import RunContext
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from google.api_core.exceptions import ResourceExhausted # Import the exception for quota exhaustion
|
10 |
+
from csv_service import get_csv_basic_info
|
11 |
+
from orchestrator_functions import csv_chart, csv_chat
|
12 |
+
|
13 |
+
|
14 |
+
# Load all API keys from the environment variable
|
15 |
+
GEMINI_API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",") # Expecting a comma-separated list of keys
|
16 |
+
|
17 |
+
# Function to initialize the model with a specific API key
|
18 |
+
def initialize_model(api_key: str) -> GeminiModel:
|
19 |
+
return GeminiModel(
|
20 |
+
'gemini-2.0-flash',
|
21 |
+
provider=GoogleGLAProvider(api_key=api_key)
|
22 |
+
)
|
23 |
+
|
24 |
+
# Define the tools
|
25 |
+
async def generate_csv_answer(csv_url: str, user_questions: List[str]) -> Any:
|
26 |
+
print("LLM using the csv chat function....")
|
27 |
+
print("CSV URL:", csv_url)
|
28 |
+
print("User question:", user_questions)
|
29 |
+
|
30 |
+
# Create an array to accumulate the answers
|
31 |
+
answers = []
|
32 |
+
# Loop through the user questions and generate answers for each
|
33 |
+
for question in user_questions:
|
34 |
+
answer = await csv_chat(csv_url, question)
|
35 |
+
answers.append(dict(question=question, answer=answer))
|
36 |
+
return answers
|
37 |
+
|
38 |
+
async def generate_chart(csv_url: str, user_questions: List[str]) -> Any:
|
39 |
+
print("LLM using the csv chart function....")
|
40 |
+
print("CSV URL:", csv_url)
|
41 |
+
print("User question:", user_questions)
|
42 |
+
|
43 |
+
# Create an array to accumulate the charts
|
44 |
+
charts = []
|
45 |
+
# Loop through the user questions and generate charts for each
|
46 |
+
for question in user_questions:
|
47 |
+
chart = await csv_chart(csv_url, question)
|
48 |
+
charts.append(dict(question=question, image_url=chart))
|
49 |
+
|
50 |
+
return charts
|
51 |
+
|
52 |
+
# Function to create an agent with a specific CSV URL
|
53 |
+
def create_agent(csv_url: str, api_key: str) -> Agent:
|
54 |
+
csv_metadata = get_csv_basic_info(csv_url)
|
55 |
+
|
56 |
+
system_prompt = (
|
57 |
+
"You are a data analyst."
|
58 |
+
"You have all the tools you need to answer any question."
|
59 |
+
"If user asking for multiple answers or charts then break the question into multiple proper questions."
|
60 |
+
"Pass csv_url/path with the questions to the tools to generate the answer."
|
61 |
+
"Explain the answer in a friendly way."
|
62 |
+
"**Format images** in Markdown: ``"
|
63 |
+
f"Your csv url is {csv_url}"
|
64 |
+
f"Your csv metadata is {csv_metadata}"
|
65 |
+
)
|
66 |
+
return Agent(
|
67 |
+
model=initialize_model(api_key),
|
68 |
+
deps_type=str,
|
69 |
+
tools=[generate_csv_answer, generate_chart],
|
70 |
+
system_prompt=system_prompt
|
71 |
+
)
|
72 |
+
|
73 |
+
def csv_orchestrator_chat(csv_url: str, user_question: str) -> str:
|
74 |
+
print("CSV URL:", csv_url)
|
75 |
+
print("User questions:", user_question)
|
76 |
+
|
77 |
+
# Iterate through all API keys
|
78 |
+
for api_key in GEMINI_API_KEYS:
|
79 |
+
try:
|
80 |
+
print(f"Attempting with API key: {api_key}")
|
81 |
+
agent = create_agent(csv_url, api_key)
|
82 |
+
result = agent.run_sync(user_question)
|
83 |
+
print("Orchestrator Result:", result.data)
|
84 |
+
return result.data
|
85 |
+
except ResourceExhausted or Exception as e:
|
86 |
+
print(f"Quota exhausted for API key: {api_key}. Switching to the next key.")
|
87 |
+
continue # Move to the next key
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error with API key {api_key}: {e}")
|
90 |
+
continue # Move to the next key
|
91 |
+
|
92 |
+
# If all keys are exhausted or fail
|
93 |
+
print("All API keys have been exhausted or failed.")
|
94 |
+
return None
|
orchestrator_functions.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary modules
|
2 |
+
import asyncio
|
3 |
+
import os
|
4 |
+
import threading
|
5 |
+
import uuid
|
6 |
+
from fastapi.encoders import jsonable_encoder
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from pandasai import SmartDataframe
|
10 |
+
from langchain_groq.chat_models import ChatGroq
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from pydantic import BaseModel
|
13 |
+
from csv_service import clean_data, extract_chart_filenames
|
14 |
+
from langchain_groq import ChatGroq
|
15 |
+
import pandas as pd
|
16 |
+
from langchain_experimental.tools import PythonAstREPLTool
|
17 |
+
from langchain_experimental.agents import create_pandas_dataframe_agent
|
18 |
+
import numpy as np
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import matplotlib
|
21 |
+
import seaborn as sns
|
22 |
+
from supabase_service import upload_image_to_supabase
|
23 |
+
from util_service import _prompt_generator, process_answer
|
24 |
+
import matplotlib
|
25 |
+
matplotlib.use('Agg')
|
26 |
+
|
27 |
+
|
28 |
+
load_dotenv()
|
29 |
+
|
30 |
+
image_file_path = os.getenv("IMAGE_FILE_PATH")
|
31 |
+
image_not_found = os.getenv("IMAGE_NOT_FOUND")
|
32 |
+
allowed_hosts = os.getenv("ALLOWED_HOSTS", "").split(",")
|
33 |
+
|
34 |
+
|
35 |
+
# Load environment variables
|
36 |
+
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
|
37 |
+
model_name = os.getenv("GROQ_LLM_MODEL")
|
38 |
+
|
39 |
+
class CsvUrlRequest(BaseModel):
|
40 |
+
csv_url: str
|
41 |
+
|
42 |
+
class ImageRequest(BaseModel):
|
43 |
+
image_path: str
|
44 |
+
|
45 |
+
class CsvCommonHeadersRequest(BaseModel):
|
46 |
+
file_urls: list[str]
|
47 |
+
|
48 |
+
class CsvsMergeRequest(BaseModel):
|
49 |
+
file_urls: list[str]
|
50 |
+
merge_type: str
|
51 |
+
common_columns_name: list[str]
|
52 |
+
|
53 |
+
# Thread-safe key management for groq_chat
|
54 |
+
current_groq_key_index = 0
|
55 |
+
current_groq_key_lock = threading.Lock()
|
56 |
+
|
57 |
+
# Thread-safe key management for langchain_csv_chat
|
58 |
+
current_langchain_key_index = 0
|
59 |
+
current_langchain_key_lock = threading.Lock()
|
60 |
+
|
61 |
+
|
62 |
+
# CHAT CODING STARTS FROM HERE
|
63 |
+
|
64 |
+
# Modified groq_chat function with thread-safe key rotation
|
65 |
+
def groq_chat(csv_url: str, question: str):
|
66 |
+
global current_groq_key_index, current_groq_key_lock
|
67 |
+
|
68 |
+
while True:
|
69 |
+
with current_groq_key_lock:
|
70 |
+
if current_groq_key_index >= len(groq_api_keys):
|
71 |
+
return {"error": "All API keys exhausted."}
|
72 |
+
current_api_key = groq_api_keys[current_groq_key_index]
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Delete cache file if exists
|
76 |
+
cache_db_path = "/workspace/cache/cache_db_0.11.db"
|
77 |
+
if os.path.exists(cache_db_path):
|
78 |
+
try:
|
79 |
+
os.remove(cache_db_path)
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error deleting cache DB file: {e}")
|
82 |
+
|
83 |
+
data = clean_data(csv_url)
|
84 |
+
llm = ChatGroq(model=model_name, api_key=current_api_key)
|
85 |
+
# Generate unique filename using UUID
|
86 |
+
chart_filename = f"chart_{uuid.uuid4()}.png"
|
87 |
+
chart_path = os.path.join("generated_charts", chart_filename)
|
88 |
+
|
89 |
+
# Configure SmartDataframe with chart settings
|
90 |
+
df = SmartDataframe(
|
91 |
+
data,
|
92 |
+
config={
|
93 |
+
'llm': llm,
|
94 |
+
'save_charts': True, # Enable chart saving
|
95 |
+
'open_charts': False,
|
96 |
+
'save_charts_path': os.path.dirname(chart_path), # Directory to save
|
97 |
+
'custom_chart_filename': chart_filename # Unique filename
|
98 |
+
}
|
99 |
+
)
|
100 |
+
|
101 |
+
answer = df.chat(question)
|
102 |
+
|
103 |
+
# Process different response types
|
104 |
+
if isinstance(answer, pd.DataFrame):
|
105 |
+
processed = answer.apply(handle_out_of_range_float).to_dict(orient="records")
|
106 |
+
elif isinstance(answer, pd.Series):
|
107 |
+
processed = answer.apply(handle_out_of_range_float).to_dict()
|
108 |
+
elif isinstance(answer, list):
|
109 |
+
processed = [handle_out_of_range_float(item) for item in answer]
|
110 |
+
elif isinstance(answer, dict):
|
111 |
+
processed = {k: handle_out_of_range_float(v) for k, v in answer.items()}
|
112 |
+
else:
|
113 |
+
processed = {"answer": str(handle_out_of_range_float(answer))}
|
114 |
+
|
115 |
+
return processed
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
error_message = str(e)
|
119 |
+
if "429" in error_message:
|
120 |
+
with current_groq_key_lock:
|
121 |
+
current_groq_key_index += 1
|
122 |
+
if current_groq_key_index >= len(groq_api_keys):
|
123 |
+
return {"error": "All API keys exhausted."}
|
124 |
+
else:
|
125 |
+
return {"error": error_message}
|
126 |
+
|
127 |
+
# Modified langchain_csv_chat with thread-safe key rotation
|
128 |
+
def langchain_csv_chat(csv_url: str, question: str, chart_required: bool):
|
129 |
+
global current_langchain_key_index, current_langchain_key_lock
|
130 |
+
|
131 |
+
data = clean_data(csv_url)
|
132 |
+
attempts = 0
|
133 |
+
|
134 |
+
while attempts < len(groq_api_keys):
|
135 |
+
with current_langchain_key_lock:
|
136 |
+
if current_langchain_key_index >= len(groq_api_keys):
|
137 |
+
current_langchain_key_index = 0
|
138 |
+
api_key = groq_api_keys[current_langchain_key_index]
|
139 |
+
current_key = current_langchain_key_index
|
140 |
+
current_langchain_key_index += 1
|
141 |
+
attempts += 1
|
142 |
+
|
143 |
+
try:
|
144 |
+
llm = ChatGroq(model=model_name, api_key=api_key)
|
145 |
+
tool = PythonAstREPLTool(locals={
|
146 |
+
"df": data,
|
147 |
+
"pd": pd,
|
148 |
+
"np": np,
|
149 |
+
"plt": plt,
|
150 |
+
"sns": sns,
|
151 |
+
"matplotlib": matplotlib
|
152 |
+
})
|
153 |
+
|
154 |
+
agent = create_pandas_dataframe_agent(
|
155 |
+
llm,
|
156 |
+
data,
|
157 |
+
agent_type="openai-tools",
|
158 |
+
verbose=True,
|
159 |
+
allow_dangerous_code=True,
|
160 |
+
extra_tools=[tool],
|
161 |
+
return_intermediate_steps=True
|
162 |
+
)
|
163 |
+
|
164 |
+
prompt = _prompt_generator(question, chart_required)
|
165 |
+
result = agent.invoke({"input": prompt})
|
166 |
+
return result.get("output")
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error with key index {current_key}: {str(e)}")
|
170 |
+
|
171 |
+
return {"error": "All API keys exhausted"}
|
172 |
+
|
173 |
+
|
174 |
+
def handle_out_of_range_float(value):
|
175 |
+
if isinstance(value, float):
|
176 |
+
if np.isnan(value):
|
177 |
+
return None
|
178 |
+
elif np.isinf(value):
|
179 |
+
return "Infinity"
|
180 |
+
return value
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
# CHART CODING STARTS FROM HERE
|
189 |
+
|
190 |
+
instructions = """
|
191 |
+
|
192 |
+
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
193 |
+
- For multiple charts, arrange them in a grid format (2x2, 3x3, etc.)
|
194 |
+
- Use colorblind-friendly palette
|
195 |
+
- Read above instructions and follow them.
|
196 |
+
|
197 |
+
"""
|
198 |
+
|
199 |
+
# Thread-safe configuration for chart endpoints
|
200 |
+
current_groq_chart_key_index = 0
|
201 |
+
current_groq_chart_lock = threading.Lock()
|
202 |
+
|
203 |
+
current_langchain_chart_key_index = 0
|
204 |
+
current_langchain_chart_lock = threading.Lock()
|
205 |
+
|
206 |
+
def model():
|
207 |
+
global current_groq_chart_key_index, current_groq_chart_lock
|
208 |
+
with current_groq_chart_lock:
|
209 |
+
if current_groq_chart_key_index >= len(groq_api_keys):
|
210 |
+
raise Exception("All API keys exhausted for chart generation")
|
211 |
+
api_key = groq_api_keys[current_groq_chart_key_index]
|
212 |
+
return ChatGroq(model=model_name, api_key=api_key)
|
213 |
+
|
214 |
+
def groq_chart(csv_url: str, question: str):
|
215 |
+
global current_groq_chart_key_index, current_groq_chart_lock
|
216 |
+
|
217 |
+
for attempt in range(len(groq_api_keys)):
|
218 |
+
try:
|
219 |
+
# Clean cache before processing
|
220 |
+
cache_db_path = "/workspace/cache/cache_db_0.11.db"
|
221 |
+
if os.path.exists(cache_db_path):
|
222 |
+
try:
|
223 |
+
os.remove(cache_db_path)
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Cache cleanup error: {e}")
|
226 |
+
|
227 |
+
data = clean_data(csv_url)
|
228 |
+
with current_groq_chart_lock:
|
229 |
+
current_api_key = groq_api_keys[current_groq_chart_key_index]
|
230 |
+
|
231 |
+
llm = ChatGroq(model=model_name, api_key=current_api_key)
|
232 |
+
|
233 |
+
# Generate unique filename using UUID
|
234 |
+
chart_filename = f"chart_{uuid.uuid4()}.png"
|
235 |
+
chart_path = os.path.join("generated_charts", chart_filename)
|
236 |
+
|
237 |
+
# Configure SmartDataframe with chart settings
|
238 |
+
df = SmartDataframe(
|
239 |
+
data,
|
240 |
+
config={
|
241 |
+
'llm': llm,
|
242 |
+
'save_charts': True, # Enable chart saving
|
243 |
+
'open_charts': False,
|
244 |
+
'save_charts_path': os.path.dirname(chart_path), # Directory to save
|
245 |
+
'custom_chart_filename': chart_filename # Unique filename
|
246 |
+
}
|
247 |
+
)
|
248 |
+
|
249 |
+
answer = df.chat(question + instructions)
|
250 |
+
|
251 |
+
if process_answer(answer):
|
252 |
+
return "Chart not generated"
|
253 |
+
return answer
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
error = str(e)
|
257 |
+
if "429" in error:
|
258 |
+
with current_groq_chart_lock:
|
259 |
+
current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
|
260 |
+
else:
|
261 |
+
print(f"Chart generation error: {error}")
|
262 |
+
return {"error": error}
|
263 |
+
|
264 |
+
return {"error": "All API keys exhausted for chart generation"}
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
|
269 |
+
global current_langchain_chart_key_index, current_langchain_chart_lock
|
270 |
+
|
271 |
+
data = clean_data(csv_url)
|
272 |
+
|
273 |
+
for attempt in range(len(groq_api_keys)):
|
274 |
+
try:
|
275 |
+
with current_langchain_chart_lock:
|
276 |
+
api_key = groq_api_keys[current_langchain_chart_key_index]
|
277 |
+
current_key = current_langchain_chart_key_index
|
278 |
+
current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)
|
279 |
+
|
280 |
+
llm = ChatGroq(model=model_name, api_key=api_key)
|
281 |
+
tool = PythonAstREPLTool(locals={
|
282 |
+
"df": data,
|
283 |
+
"pd": pd,
|
284 |
+
"np": np,
|
285 |
+
"plt": plt,
|
286 |
+
"sns": sns,
|
287 |
+
"matplotlib": matplotlib,
|
288 |
+
"uuid": uuid
|
289 |
+
})
|
290 |
+
|
291 |
+
agent = create_pandas_dataframe_agent(
|
292 |
+
llm,
|
293 |
+
data,
|
294 |
+
agent_type="openai-tools",
|
295 |
+
verbose=True,
|
296 |
+
allow_dangerous_code=True,
|
297 |
+
extra_tools=[tool],
|
298 |
+
return_intermediate_steps=True
|
299 |
+
)
|
300 |
+
|
301 |
+
result = agent.invoke({"input": _prompt_generator(question, True)})
|
302 |
+
output = result.get("output", "")
|
303 |
+
|
304 |
+
# Verify chart file creation
|
305 |
+
chart_files = extract_chart_filenames(output)
|
306 |
+
if len(chart_files) > 0:
|
307 |
+
return chart_files
|
308 |
+
|
309 |
+
if attempt < len(groq_api_keys) - 1:
|
310 |
+
print(f"Langchain chart error (key {current_key}): {output}")
|
311 |
+
|
312 |
+
except Exception as e:
|
313 |
+
print(f"Langchain chart error (key {current_key}): {str(e)}")
|
314 |
+
|
315 |
+
return "Chart generation failed after all retries"
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
###########################################################################################################################
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
+
async def csv_chart(csv_url: str, query: str):
|
326 |
+
try:
|
327 |
+
|
328 |
+
# Groq-based chart generation
|
329 |
+
groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
|
330 |
+
print(f"Generated Chart: {groq_result}")
|
331 |
+
if groq_result != 'Chart not generated':
|
332 |
+
unique_file_name =f'{str(uuid.uuid4())}.png'
|
333 |
+
image_public_url = await upload_image_to_supabase(f"{groq_result}", unique_file_name)
|
334 |
+
print(f"Image uploaded to Supabase: {image_public_url}")
|
335 |
+
return {"image_url": image_public_url}
|
336 |
+
else:
|
337 |
+
return {"error": "All chart generation methods failed"}
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
print(f"Critical chart error: {str(e)}")
|
341 |
+
return {"error": "Internal system error"}
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
async def csv_chat(csv_url: str, query: str):
|
349 |
+
|
350 |
+
try:
|
351 |
+
# Process with groq_chat first
|
352 |
+
groq_answer = await asyncio.to_thread(groq_chat, csv_url, query)
|
353 |
+
print("groq_answer:", groq_answer)
|
354 |
+
|
355 |
+
if process_answer(groq_answer) == "Empty response received.":
|
356 |
+
return {"answer": "Sorry, I couldn't find relevant data..."}
|
357 |
+
|
358 |
+
if process_answer(groq_answer):
|
359 |
+
lang_answer = await asyncio.to_thread(
|
360 |
+
langchain_csv_chat, csv_url, query, False
|
361 |
+
)
|
362 |
+
if process_answer(lang_answer):
|
363 |
+
return {"answer": "error"}
|
364 |
+
return {"answer": jsonable_encoder(lang_answer)}
|
365 |
+
|
366 |
+
return {"answer": jsonable_encoder(groq_answer)}
|
367 |
+
|
368 |
+
except Exception as e:
|
369 |
+
print(f"Error processing request: {str(e)}")
|
370 |
+
return {"answer": "error"}
|
371 |
+
|
372 |
+
def handle_out_of_range_float(value):
|
373 |
+
if isinstance(value, float):
|
374 |
+
if np.isnan(value):
|
375 |
+
return None
|
376 |
+
elif np.isinf(value):
|
377 |
+
return "Infinity"
|
378 |
+
return value
|
379 |
+
|
380 |
+
|
381 |
+
|