Soumik555 commited on
Commit
7a58a46
·
1 Parent(s): 3d95cad

added cerebras

Browse files
Files changed (1) hide show
  1. together_ai_llama_agent.py +65 -6
together_ai_llama_agent.py CHANGED
@@ -55,6 +55,40 @@ def get_csv_info(df: pd.DataFrame) -> dict:
55
  return info
56
 
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  def get_csv_system_prompt(df: pd.DataFrame) -> str:
59
  """Generate system prompt for CSV analysis"""
60
  csv_info = get_csv_info(df)
@@ -74,13 +108,38 @@ Strict Rules:
74
  - Include necessary imports (except pandas) and include complete code
75
  - Use df directly (e.g., print(df[...].mean()))
76
  3. For visualizations:
77
- - Adjust font sizes, rotate labels (45° if needed), truncate for readability
78
- - Figure size: (12, 6)
79
- - Descriptive titles (fontsize=14)
80
- - Colorblind-friendly palettes
 
 
 
 
 
 
 
 
81
  - Do not use any visualization library other than matplotlib or seaborn
82
- - Complete code with plt.show()
83
- - Example: plt.bar(df['x'], df['y']) \n plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  4. For Lists and Dictionaries, return them as JSON
85
 
86
  Example:
 
55
  return info
56
 
57
 
58
+ # def get_csv_system_prompt(df: pd.DataFrame) -> str:
59
+ # """Generate system prompt for CSV analysis"""
60
+ # csv_info = get_csv_info(df)
61
+
62
+ # prompt = f"""
63
+ # You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.
64
+
65
+ # CSV Info:
66
+ # - Rows: {csv_info['num_rows']}, Cols: {csv_info['num_cols']}
67
+ # - Columns: {csv_info['columns']}
68
+ # - Sample: {csv_info['example_rows']}
69
+ # - Dtypes: {csv_info['dtypes']}
70
+
71
+ # Strict Rules:
72
+ # 1. Never recreate 'df' - use the existing variable
73
+ # 2. For analysis:
74
+ # - Include necessary imports (except pandas) and include complete code
75
+ # - Use df directly (e.g., print(df[...].mean()))
76
+ # 3. For visualizations:
77
+ # - Adjust font sizes, rotate labels (45° if needed), truncate for readability
78
+ # - Figure size: (12, 6)
79
+ # - Descriptive titles (fontsize=14)
80
+ # - Colorblind-friendly palettes
81
+ # - Do not use any visualization library other than matplotlib or seaborn
82
+ # - Complete code with plt.show()
83
+ # - Example: plt.bar(df['x'], df['y']) \n plt.show()
84
+ # 4. For Lists and Dictionaries, return them as JSON
85
+
86
+ # Example:
87
+ # import json
88
+ # print(json.dumps(df[df['col'] == 'val'].to_dict('records'), indent=2))
89
+ # """
90
+ # return
91
+
92
  def get_csv_system_prompt(df: pd.DataFrame) -> str:
93
  """Generate system prompt for CSV analysis"""
94
  csv_info = get_csv_info(df)
 
108
  - Include necessary imports (except pandas) and include complete code
109
  - Use df directly (e.g., print(df[...].mean()))
110
  3. For visualizations:
111
+ - Create the most professional, publication-quality charts possible
112
+ - Maximize descriptive elements and detail while maintaining clarity
113
+ - Figure size: (14, 8) for complex charts, (12, 6) for simpler ones
114
+ - Use comprehensive titles (fontsize=16) and axis labels (fontsize=14)
115
+ - Include informative legends (fontsize=12) when appropriate
116
+ - Add annotations for important data points where valuable
117
+ - Rotate x-labels (45° if needed) with fontsize=12 for readability
118
+ - Use colorblind-friendly palettes (seaborn 'deep', 'muted', or 'colorblind')
119
+ - Add gridlines (alpha=0.3) when they improve readability
120
+ - Include proper margins and padding to prevent label cutoff
121
+ - For distributions, include kernel density estimates when appropriate
122
+ - For time series, use appropriate date formatting and markers
123
  - Do not use any visualization library other than matplotlib or seaborn
124
+ - Complete code with plt.tight_layout() before plt.show()
125
+ - Example professional chart:
126
+ plt.figure(figsize=(14, 8))
127
+ ax = sns.barplot(x='category', y='value', data=df, palette='muted', ci=None)
128
+ plt.title('Detailed Analysis of Values by Category', fontsize=16, pad=20)
129
+ plt.xlabel('Category', fontsize=14)
130
+ plt.ylabel('Average Value', fontsize=14)
131
+ plt.xticks(rotation=45, ha='right', fontsize=12)
132
+ plt.yticks(fontsize=12)
133
+ ax.grid(True, linestyle='--', alpha=0.3)
134
+ for p in ax.patches:
135
+ ax.annotate(f'{{p.get_height():.1f}}',
136
+ (p.get_x() + p.get_width() / 2., p.get_height()),
137
+ ha='center', va='center',
138
+ xytext=(0, 10),
139
+ textcoords='offset points',
140
+ fontsize=12)
141
+ plt.tight_layout()
142
+ plt.show()
143
  4. For Lists and Dictionaries, return them as JSON
144
 
145
  Example: