added table renderer with scollbars
Browse files- python_code_executor_service.py +314 -314
python_code_executor_service.py
CHANGED
@@ -1,260 +1,3 @@
|
|
1 |
-
# import os
|
2 |
-
# from dotenv import load_dotenv
|
3 |
-
# import uuid
|
4 |
-
# import matplotlib.pyplot as plt
|
5 |
-
# from pathlib import Path
|
6 |
-
# from typing import Dict, Any, List, Optional
|
7 |
-
# import pandas as pd
|
8 |
-
# import numpy as np
|
9 |
-
# import json
|
10 |
-
# import io
|
11 |
-
# import contextlib
|
12 |
-
# import traceback
|
13 |
-
# import time
|
14 |
-
# from datetime import datetime, timedelta
|
15 |
-
# import seaborn as sns
|
16 |
-
# import scipy.stats as stats
|
17 |
-
# from pydantic import BaseModel
|
18 |
-
|
19 |
-
# from supabase_service import upload_file_to_supabase
|
20 |
-
|
21 |
-
# # Load environment variables from .env file
|
22 |
-
# load_dotenv()
|
23 |
-
|
24 |
-
# class CodeResponse(BaseModel):
|
25 |
-
# """Container for code-related responses"""
|
26 |
-
# language: str = "python"
|
27 |
-
# code: str
|
28 |
-
|
29 |
-
|
30 |
-
# class ChartSpecification(BaseModel):
|
31 |
-
# """Details about requested charts"""
|
32 |
-
# image_description: str
|
33 |
-
# code: Optional[str] = None
|
34 |
-
|
35 |
-
|
36 |
-
# class AnalysisOperation(BaseModel):
|
37 |
-
# """Container for a single analysis operation with its code and result"""
|
38 |
-
# code: CodeResponse
|
39 |
-
# description: str
|
40 |
-
|
41 |
-
|
42 |
-
# class CsvChatResult(BaseModel):
|
43 |
-
# """Structured response for CSV-related AI interactions"""
|
44 |
-
# response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
|
45 |
-
# casual_response: str
|
46 |
-
# analysis_operations: List[AnalysisOperation]
|
47 |
-
# charts: Optional[List[ChartSpecification]] = None
|
48 |
-
|
49 |
-
|
50 |
-
# class PythonExecutor:
|
51 |
-
# """Handles execution of Python code with comprehensive data analysis libraries"""
|
52 |
-
|
53 |
-
# def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
|
54 |
-
# """
|
55 |
-
# Initialize the PythonExecutor with a DataFrame
|
56 |
-
|
57 |
-
# Args:
|
58 |
-
# df (pd.DataFrame): The DataFrame to operate on
|
59 |
-
# charts_folder (str): Folder to save charts in
|
60 |
-
# """
|
61 |
-
# self.df = df
|
62 |
-
# self.charts_folder = Path(charts_folder)
|
63 |
-
# self.charts_folder.mkdir(exist_ok=True)
|
64 |
-
|
65 |
-
# def execute_code(self, code: str) -> Dict[str, Any]:
|
66 |
-
# """
|
67 |
-
# Execute Python code with full data analysis context and return results
|
68 |
-
|
69 |
-
# Args:
|
70 |
-
# code (str): Python code to execute
|
71 |
-
|
72 |
-
# Returns:
|
73 |
-
# dict: Dictionary containing execution results and any generated plots
|
74 |
-
# """
|
75 |
-
# output = ""
|
76 |
-
# error = None
|
77 |
-
# plots = []
|
78 |
-
|
79 |
-
# # Capture stdout
|
80 |
-
# stdout = io.StringIO()
|
81 |
-
|
82 |
-
# # Monkey patch plt.show() to save figures
|
83 |
-
# original_show = plt.show
|
84 |
-
|
85 |
-
# def custom_show():
|
86 |
-
# """Custom show function that saves plots instead of displaying them"""
|
87 |
-
# for i, fig in enumerate(plt.get_fignums()):
|
88 |
-
# figure = plt.figure(fig)
|
89 |
-
# # Save plot to bytes buffer
|
90 |
-
# buf = io.BytesIO()
|
91 |
-
# figure.savefig(buf, format='png', bbox_inches='tight')
|
92 |
-
# buf.seek(0)
|
93 |
-
# plots.append(buf.read())
|
94 |
-
# plt.close('all')
|
95 |
-
|
96 |
-
# try:
|
97 |
-
# # Create comprehensive execution context with data analysis libraries
|
98 |
-
# exec_globals = {
|
99 |
-
# # Core data analysis
|
100 |
-
# 'pd': pd,
|
101 |
-
# 'np': np,
|
102 |
-
# 'df': self.df,
|
103 |
-
|
104 |
-
# # Visualization
|
105 |
-
# 'plt': plt,
|
106 |
-
# 'sns': sns,
|
107 |
-
|
108 |
-
# # Statistics
|
109 |
-
# 'stats': stats,
|
110 |
-
|
111 |
-
# # Date/time
|
112 |
-
# 'datetime': datetime,
|
113 |
-
# 'timedelta': timedelta,
|
114 |
-
# 'time': time,
|
115 |
-
|
116 |
-
# # Utilities
|
117 |
-
# 'json': json,
|
118 |
-
# '__builtins__': __builtins__,
|
119 |
-
# }
|
120 |
-
|
121 |
-
# # Replace plt.show with custom implementation
|
122 |
-
# plt.show = custom_show
|
123 |
-
|
124 |
-
# # Execute code and capture output
|
125 |
-
# with contextlib.redirect_stdout(stdout):
|
126 |
-
# exec(code, exec_globals)
|
127 |
-
|
128 |
-
# output = stdout.getvalue()
|
129 |
-
|
130 |
-
# except Exception as e:
|
131 |
-
# error = {
|
132 |
-
# "message": str(e),
|
133 |
-
# "traceback": traceback.format_exc()
|
134 |
-
# }
|
135 |
-
# finally:
|
136 |
-
# # Restore original plt.show
|
137 |
-
# plt.show = original_show
|
138 |
-
|
139 |
-
# return {
|
140 |
-
# 'output': output,
|
141 |
-
# 'error': error,
|
142 |
-
# 'plots': plots
|
143 |
-
# }
|
144 |
-
|
145 |
-
# async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
|
146 |
-
# """
|
147 |
-
# Save plot to Supabase storage and return the public URL
|
148 |
-
|
149 |
-
# Args:
|
150 |
-
# plot_data (bytes): Image data in bytes
|
151 |
-
# description (str): Description of the plot
|
152 |
-
# chat_id (str): ID of the chat session
|
153 |
-
|
154 |
-
# Returns:
|
155 |
-
# str: Public URL of the uploaded chart
|
156 |
-
# """
|
157 |
-
# # Generate unique filename
|
158 |
-
# filename = f"chart_{uuid.uuid4().hex}.png"
|
159 |
-
# filepath = self.charts_folder / filename
|
160 |
-
|
161 |
-
# # Save the plot locally first
|
162 |
-
# with open(filepath, 'wb') as f:
|
163 |
-
# f.write(plot_data)
|
164 |
-
|
165 |
-
# try:
|
166 |
-
# # Upload to Supabase
|
167 |
-
# public_url = await upload_file_to_supabase(
|
168 |
-
# file_path=str(filepath),
|
169 |
-
# file_name=filename,
|
170 |
-
# chat_id=chat_id
|
171 |
-
# )
|
172 |
-
|
173 |
-
# # Remove the local file after upload
|
174 |
-
# os.remove(filepath)
|
175 |
-
|
176 |
-
# return public_url
|
177 |
-
# except Exception as e:
|
178 |
-
# # Clean up local file if upload fails
|
179 |
-
# if os.path.exists(filepath):
|
180 |
-
# os.remove(filepath)
|
181 |
-
# raise Exception(f"Failed to upload plot to Supabase: {e}")
|
182 |
-
|
183 |
-
# def _looks_like_structured_data(self, output: str) -> bool:
|
184 |
-
# """Helper to detect JSON-like or array-like output"""
|
185 |
-
# output = output.strip()
|
186 |
-
# return (
|
187 |
-
# output.startswith('{') and output.endswith('}') or # JSON object
|
188 |
-
# output.startswith('[') and output.endswith(']') or # Array
|
189 |
-
# '\n' in output and '=' in output # Python console output
|
190 |
-
# )
|
191 |
-
|
192 |
-
# async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
|
193 |
-
# """
|
194 |
-
# Process the CsvChatResult response and generate formatted output
|
195 |
-
# with markdown code blocks for structured data.
|
196 |
-
|
197 |
-
# Args:
|
198 |
-
# response (CsvChatResult): Response from CSV analysis
|
199 |
-
# chat_id (str): ID of the chat session
|
200 |
-
|
201 |
-
# Returns:
|
202 |
-
# str: Formatted output with results and image URLs
|
203 |
-
# """
|
204 |
-
# output_parts = []
|
205 |
-
|
206 |
-
# # Add casual response
|
207 |
-
# output_parts.append(response.casual_response)
|
208 |
-
|
209 |
-
# # Process analysis operations
|
210 |
-
# for operation in response.analysis_operations:
|
211 |
-
# # Execute the code
|
212 |
-
# result = self.execute_code(operation.code.code)
|
213 |
-
|
214 |
-
# # Add operation description
|
215 |
-
# output_parts.append(f"\n{operation.description}:")
|
216 |
-
|
217 |
-
# # Add output or error with markdown wrapping
|
218 |
-
# if result['error']:
|
219 |
-
# output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
|
220 |
-
# else:
|
221 |
-
# output = result['output'].strip()
|
222 |
-
# if self._looks_like_structured_data(output):
|
223 |
-
# output_parts.append("```python\n" + output + "\n```")
|
224 |
-
# else:
|
225 |
-
# output_parts.append(output)
|
226 |
-
|
227 |
-
# # Process charts
|
228 |
-
# if response.charts:
|
229 |
-
# output_parts.append("\nVisualizations:")
|
230 |
-
# for chart in response.charts:
|
231 |
-
# if chart.code:
|
232 |
-
# result = self.execute_code(chart.code)
|
233 |
-
# if result['plots']:
|
234 |
-
# for plot_data in result['plots']:
|
235 |
-
# try:
|
236 |
-
# public_url = await self.save_plot_to_supabase(
|
237 |
-
# plot_data=plot_data,
|
238 |
-
# description=chart.image_description,
|
239 |
-
# chat_id=chat_id
|
240 |
-
# )
|
241 |
-
# output_parts.append(f"\n{chart.image_description}")
|
242 |
-
# output_parts.append(f"")
|
243 |
-
# except Exception as e:
|
244 |
-
# output_parts.append(f"\nError uploading chart: {str(e)}")
|
245 |
-
# elif result['error']:
|
246 |
-
# output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
|
247 |
-
|
248 |
-
# return "\n".join(output_parts)
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
# Table formatter
|
257 |
-
|
258 |
import os
|
259 |
from dotenv import load_dotenv
|
260 |
import uuid
|
@@ -399,30 +142,7 @@ class PythonExecutor:
|
|
399 |
'plots': plots
|
400 |
}
|
401 |
|
402 |
-
def
|
403 |
-
"""
|
404 |
-
Convert pandas DataFrame to a text format that can be easily rendered
|
405 |
-
in the frontend using the ScrollableTableRenderer component.
|
406 |
-
|
407 |
-
Args:
|
408 |
-
df (pd.DataFrame): DataFrame to convert
|
409 |
-
|
410 |
-
Returns:
|
411 |
-
str: Text representation of the DataFrame
|
412 |
-
"""
|
413 |
-
# Convert DataFrame to string with proper formatting
|
414 |
-
df_str = df.to_string(index=True)
|
415 |
-
|
416 |
-
# Split into lines and clean up
|
417 |
-
lines = df_str.split('\n')
|
418 |
-
|
419 |
-
# Remove any trailing whitespace from each line
|
420 |
-
cleaned_lines = [line.rstrip() for line in lines]
|
421 |
-
|
422 |
-
# Join back with newlines
|
423 |
-
return '\n'.join(cleaned_lines)
|
424 |
-
|
425 |
-
async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
|
426 |
"""
|
427 |
Save plot to Supabase storage and return the public URL
|
428 |
|
@@ -469,24 +189,6 @@ class PythonExecutor:
|
|
469 |
'\n' in output and '=' in output # Python console output
|
470 |
)
|
471 |
|
472 |
-
def _is_dataframe_output(self, output: str) -> bool:
|
473 |
-
"""Helper to detect if output looks like a pandas DataFrame"""
|
474 |
-
lines = output.strip().split('\n')
|
475 |
-
if len(lines) < 2:
|
476 |
-
return False
|
477 |
-
|
478 |
-
# Check for typical DataFrame header pattern
|
479 |
-
first_line = lines[0].strip()
|
480 |
-
second_line = lines[1].strip()
|
481 |
-
|
482 |
-
# Look for column headers and separator line
|
483 |
-
if not first_line or not second_line:
|
484 |
-
return False
|
485 |
-
|
486 |
-
# Check if the first line contains column names
|
487 |
-
# and the second line has some alignment characters
|
488 |
-
return True
|
489 |
-
|
490 |
async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
|
491 |
"""
|
492 |
Process the CsvChatResult response and generate formatted output
|
@@ -517,20 +219,7 @@ class PythonExecutor:
|
|
517 |
output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
|
518 |
else:
|
519 |
output = result['output'].strip()
|
520 |
-
|
521 |
-
# Check if the output is a DataFrame-like structure
|
522 |
-
if self._is_dataframe_output(output):
|
523 |
-
# Convert to a clean text format for frontend rendering
|
524 |
-
try:
|
525 |
-
# Get the last evaluated expression which might be the DataFrame
|
526 |
-
# This is a simple approach - in practice you might need a more robust way
|
527 |
-
# to capture the actual DataFrame from the execution context
|
528 |
-
df_output = self._convert_dataframe_to_text(eval(operation.code.code.split('\n')[-1], globals(), locals()))
|
529 |
-
output_parts.append("```text\n" + df_output + "\n```")
|
530 |
-
except:
|
531 |
-
# Fall back to regular output if we can't convert it
|
532 |
-
output_parts.append("```text\n" + output + "\n```")
|
533 |
-
elif self._looks_like_structured_data(output):
|
534 |
output_parts.append("```python\n" + output + "\n```")
|
535 |
else:
|
536 |
output_parts.append(output)
|
@@ -556,4 +245,315 @@ class PythonExecutor:
|
|
556 |
elif result['error']:
|
557 |
output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
|
558 |
|
559 |
-
return "\n".join(output_parts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
import uuid
|
|
|
142 |
'plots': plots
|
143 |
}
|
144 |
|
145 |
+
async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"""
|
147 |
Save plot to Supabase storage and return the public URL
|
148 |
|
|
|
189 |
'\n' in output and '=' in output # Python console output
|
190 |
)
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
|
193 |
"""
|
194 |
Process the CsvChatResult response and generate formatted output
|
|
|
219 |
output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
|
220 |
else:
|
221 |
output = result['output'].strip()
|
222 |
+
if self._looks_like_structured_data(output):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
output_parts.append("```python\n" + output + "\n```")
|
224 |
else:
|
225 |
output_parts.append(output)
|
|
|
245 |
elif result['error']:
|
246 |
output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
|
247 |
|
248 |
+
return "\n".join(output_parts)
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
# Table formatter
|
257 |
+
|
258 |
+
# import os
|
259 |
+
# from dotenv import load_dotenv
|
260 |
+
# import uuid
|
261 |
+
# import matplotlib.pyplot as plt
|
262 |
+
# from pathlib import Path
|
263 |
+
# from typing import Dict, Any, List, Optional
|
264 |
+
# import pandas as pd
|
265 |
+
# import numpy as np
|
266 |
+
# import json
|
267 |
+
# import io
|
268 |
+
# import contextlib
|
269 |
+
# import traceback
|
270 |
+
# import time
|
271 |
+
# from datetime import datetime, timedelta
|
272 |
+
# import seaborn as sns
|
273 |
+
# import scipy.stats as stats
|
274 |
+
# from pydantic import BaseModel
|
275 |
+
|
276 |
+
# from supabase_service import upload_file_to_supabase
|
277 |
+
|
278 |
+
# # Load environment variables from .env file
|
279 |
+
# load_dotenv()
|
280 |
+
|
281 |
+
# class CodeResponse(BaseModel):
|
282 |
+
# """Container for code-related responses"""
|
283 |
+
# language: str = "python"
|
284 |
+
# code: str
|
285 |
+
|
286 |
+
|
287 |
+
# class ChartSpecification(BaseModel):
|
288 |
+
# """Details about requested charts"""
|
289 |
+
# image_description: str
|
290 |
+
# code: Optional[str] = None
|
291 |
+
|
292 |
+
|
293 |
+
# class AnalysisOperation(BaseModel):
|
294 |
+
# """Container for a single analysis operation with its code and result"""
|
295 |
+
# code: CodeResponse
|
296 |
+
# description: str
|
297 |
+
|
298 |
+
|
299 |
+
# class CsvChatResult(BaseModel):
|
300 |
+
# """Structured response for CSV-related AI interactions"""
|
301 |
+
# response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
|
302 |
+
# casual_response: str
|
303 |
+
# analysis_operations: List[AnalysisOperation]
|
304 |
+
# charts: Optional[List[ChartSpecification]] = None
|
305 |
+
|
306 |
+
|
307 |
+
# class PythonExecutor:
|
308 |
+
# """Handles execution of Python code with comprehensive data analysis libraries"""
|
309 |
+
|
310 |
+
# def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
|
311 |
+
# """
|
312 |
+
# Initialize the PythonExecutor with a DataFrame
|
313 |
+
|
314 |
+
# Args:
|
315 |
+
# df (pd.DataFrame): The DataFrame to operate on
|
316 |
+
# charts_folder (str): Folder to save charts in
|
317 |
+
# """
|
318 |
+
# self.df = df
|
319 |
+
# self.charts_folder = Path(charts_folder)
|
320 |
+
# self.charts_folder.mkdir(exist_ok=True)
|
321 |
+
|
322 |
+
# def execute_code(self, code: str) -> Dict[str, Any]:
|
323 |
+
# """
|
324 |
+
# Execute Python code with full data analysis context and return results
|
325 |
+
|
326 |
+
# Args:
|
327 |
+
# code (str): Python code to execute
|
328 |
+
|
329 |
+
# Returns:
|
330 |
+
# dict: Dictionary containing execution results and any generated plots
|
331 |
+
# """
|
332 |
+
# output = ""
|
333 |
+
# error = None
|
334 |
+
# plots = []
|
335 |
+
|
336 |
+
# # Capture stdout
|
337 |
+
# stdout = io.StringIO()
|
338 |
+
|
339 |
+
# # Monkey patch plt.show() to save figures
|
340 |
+
# original_show = plt.show
|
341 |
+
|
342 |
+
# def custom_show():
|
343 |
+
# """Custom show function that saves plots instead of displaying them"""
|
344 |
+
# for i, fig in enumerate(plt.get_fignums()):
|
345 |
+
# figure = plt.figure(fig)
|
346 |
+
# # Save plot to bytes buffer
|
347 |
+
# buf = io.BytesIO()
|
348 |
+
# figure.savefig(buf, format='png', bbox_inches='tight')
|
349 |
+
# buf.seek(0)
|
350 |
+
# plots.append(buf.read())
|
351 |
+
# plt.close('all')
|
352 |
+
|
353 |
+
# try:
|
354 |
+
# # Create comprehensive execution context with data analysis libraries
|
355 |
+
# exec_globals = {
|
356 |
+
# # Core data analysis
|
357 |
+
# 'pd': pd,
|
358 |
+
# 'np': np,
|
359 |
+
# 'df': self.df,
|
360 |
+
|
361 |
+
# # Visualization
|
362 |
+
# 'plt': plt,
|
363 |
+
# 'sns': sns,
|
364 |
+
|
365 |
+
# # Statistics
|
366 |
+
# 'stats': stats,
|
367 |
+
|
368 |
+
# # Date/time
|
369 |
+
# 'datetime': datetime,
|
370 |
+
# 'timedelta': timedelta,
|
371 |
+
# 'time': time,
|
372 |
+
|
373 |
+
# # Utilities
|
374 |
+
# 'json': json,
|
375 |
+
# '__builtins__': __builtins__,
|
376 |
+
# }
|
377 |
+
|
378 |
+
# # Replace plt.show with custom implementation
|
379 |
+
# plt.show = custom_show
|
380 |
+
|
381 |
+
# # Execute code and capture output
|
382 |
+
# with contextlib.redirect_stdout(stdout):
|
383 |
+
# exec(code, exec_globals)
|
384 |
+
|
385 |
+
# output = stdout.getvalue()
|
386 |
+
|
387 |
+
# except Exception as e:
|
388 |
+
# error = {
|
389 |
+
# "message": str(e),
|
390 |
+
# "traceback": traceback.format_exc()
|
391 |
+
# }
|
392 |
+
# finally:
|
393 |
+
# # Restore original plt.show
|
394 |
+
# plt.show = original_show
|
395 |
+
|
396 |
+
# return {
|
397 |
+
# 'output': output,
|
398 |
+
# 'error': error,
|
399 |
+
# 'plots': plots
|
400 |
+
# }
|
401 |
+
|
402 |
+
# def _convert_dataframe_to_text(self, df: pd.DataFrame) -> str:
|
403 |
+
# """
|
404 |
+
# Convert pandas DataFrame to a text format that can be easily rendered
|
405 |
+
# in the frontend using the ScrollableTableRenderer component.
|
406 |
+
|
407 |
+
# Args:
|
408 |
+
# df (pd.DataFrame): DataFrame to convert
|
409 |
+
|
410 |
+
# Returns:
|
411 |
+
# str: Text representation of the DataFrame
|
412 |
+
# """
|
413 |
+
# # Convert DataFrame to string with proper formatting
|
414 |
+
# df_str = df.to_string(index=True)
|
415 |
+
|
416 |
+
# # Split into lines and clean up
|
417 |
+
# lines = df_str.split('\n')
|
418 |
+
|
419 |
+
# # Remove any trailing whitespace from each line
|
420 |
+
# cleaned_lines = [line.rstrip() for line in lines]
|
421 |
+
|
422 |
+
# # Join back with newlines
|
423 |
+
# return '\n'.join(cleaned_lines)
|
424 |
+
|
425 |
+
# async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
|
426 |
+
# """
|
427 |
+
# Save plot to Supabase storage and return the public URL
|
428 |
+
|
429 |
+
# Args:
|
430 |
+
# plot_data (bytes): Image data in bytes
|
431 |
+
# description (str): Description of the plot
|
432 |
+
# chat_id (str): ID of the chat session
|
433 |
+
|
434 |
+
# Returns:
|
435 |
+
# str: Public URL of the uploaded chart
|
436 |
+
# """
|
437 |
+
# # Generate unique filename
|
438 |
+
# filename = f"chart_{uuid.uuid4().hex}.png"
|
439 |
+
# filepath = self.charts_folder / filename
|
440 |
+
|
441 |
+
# # Save the plot locally first
|
442 |
+
# with open(filepath, 'wb') as f:
|
443 |
+
# f.write(plot_data)
|
444 |
+
|
445 |
+
# try:
|
446 |
+
# # Upload to Supabase
|
447 |
+
# public_url = await upload_file_to_supabase(
|
448 |
+
# file_path=str(filepath),
|
449 |
+
# file_name=filename,
|
450 |
+
# chat_id=chat_id
|
451 |
+
# )
|
452 |
+
|
453 |
+
# # Remove the local file after upload
|
454 |
+
# os.remove(filepath)
|
455 |
+
|
456 |
+
# return public_url
|
457 |
+
# except Exception as e:
|
458 |
+
# # Clean up local file if upload fails
|
459 |
+
# if os.path.exists(filepath):
|
460 |
+
# os.remove(filepath)
|
461 |
+
# raise Exception(f"Failed to upload plot to Supabase: {e}")
|
462 |
+
|
463 |
+
# def _looks_like_structured_data(self, output: str) -> bool:
|
464 |
+
# """Helper to detect JSON-like or array-like output"""
|
465 |
+
# output = output.strip()
|
466 |
+
# return (
|
467 |
+
# output.startswith('{') and output.endswith('}') or # JSON object
|
468 |
+
# output.startswith('[') and output.endswith(']') or # Array
|
469 |
+
# '\n' in output and '=' in output # Python console output
|
470 |
+
# )
|
471 |
+
|
472 |
+
# def _is_dataframe_output(self, output: str) -> bool:
|
473 |
+
# """Helper to detect if output looks like a pandas DataFrame"""
|
474 |
+
# lines = output.strip().split('\n')
|
475 |
+
# if len(lines) < 2:
|
476 |
+
# return False
|
477 |
+
|
478 |
+
# # Check for typical DataFrame header pattern
|
479 |
+
# first_line = lines[0].strip()
|
480 |
+
# second_line = lines[1].strip()
|
481 |
+
|
482 |
+
# # Look for column headers and separator line
|
483 |
+
# if not first_line or not second_line:
|
484 |
+
# return False
|
485 |
+
|
486 |
+
# # Check if the first line contains column names
|
487 |
+
# # and the second line has some alignment characters
|
488 |
+
# return True
|
489 |
+
|
490 |
+
# async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
|
491 |
+
# """
|
492 |
+
# Process the CsvChatResult response and generate formatted output
|
493 |
+
# with markdown code blocks for structured data.
|
494 |
+
|
495 |
+
# Args:
|
496 |
+
# response (CsvChatResult): Response from CSV analysis
|
497 |
+
# chat_id (str): ID of the chat session
|
498 |
+
|
499 |
+
# Returns:
|
500 |
+
# str: Formatted output with results and image URLs
|
501 |
+
# """
|
502 |
+
# output_parts = []
|
503 |
+
|
504 |
+
# # Add casual response
|
505 |
+
# output_parts.append(response.casual_response)
|
506 |
+
|
507 |
+
# # Process analysis operations
|
508 |
+
# for operation in response.analysis_operations:
|
509 |
+
# # Execute the code
|
510 |
+
# result = self.execute_code(operation.code.code)
|
511 |
+
|
512 |
+
# # Add operation description
|
513 |
+
# output_parts.append(f"\n{operation.description}:")
|
514 |
+
|
515 |
+
# # Add output or error with markdown wrapping
|
516 |
+
# if result['error']:
|
517 |
+
# output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
|
518 |
+
# else:
|
519 |
+
# output = result['output'].strip()
|
520 |
+
|
521 |
+
# # Check if the output is a DataFrame-like structure
|
522 |
+
# if self._is_dataframe_output(output):
|
523 |
+
# # Convert to a clean text format for frontend rendering
|
524 |
+
# try:
|
525 |
+
# # Get the last evaluated expression which might be the DataFrame
|
526 |
+
# # This is a simple approach - in practice you might need a more robust way
|
527 |
+
# # to capture the actual DataFrame from the execution context
|
528 |
+
# df_output = self._convert_dataframe_to_text(eval(operation.code.code.split('\n')[-1], globals(), locals()))
|
529 |
+
# output_parts.append("```text\n" + df_output + "\n```")
|
530 |
+
# except:
|
531 |
+
# # Fall back to regular output if we can't convert it
|
532 |
+
# output_parts.append("```text\n" + output + "\n```")
|
533 |
+
# elif self._looks_like_structured_data(output):
|
534 |
+
# output_parts.append("```python\n" + output + "\n```")
|
535 |
+
# else:
|
536 |
+
# output_parts.append(output)
|
537 |
+
|
538 |
+
# # Process charts
|
539 |
+
# if response.charts:
|
540 |
+
# output_parts.append("\nVisualizations:")
|
541 |
+
# for chart in response.charts:
|
542 |
+
# if chart.code:
|
543 |
+
# result = self.execute_code(chart.code)
|
544 |
+
# if result['plots']:
|
545 |
+
# for plot_data in result['plots']:
|
546 |
+
# try:
|
547 |
+
# public_url = await self.save_plot_to_supabase(
|
548 |
+
# plot_data=plot_data,
|
549 |
+
# description=chart.image_description,
|
550 |
+
# chat_id=chat_id
|
551 |
+
# )
|
552 |
+
# output_parts.append(f"\n{chart.image_description}")
|
553 |
+
# output_parts.append(f"")
|
554 |
+
# except Exception as e:
|
555 |
+
# output_parts.append(f"\nError uploading chart: {str(e)}")
|
556 |
+
# elif result['error']:
|
557 |
+
# output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
|
558 |
+
|
559 |
+
# return "\n".join(output_parts)
|