single tooltip component
Browse files- controller.py +1 -264
- gemini_langchain_agent.py +0 -203
- groq_chart.py +1 -1
- openai_pandasai_service.py +1 -1
controller.py
CHANGED
@@ -402,7 +402,7 @@ def handle_out_of_range_float(value):
|
|
402 |
instructions = """
|
403 |
|
404 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
405 |
-
- For multiple charts, arrange them in a
|
406 |
- Use colorblind-friendly palette
|
407 |
- Read above instructions and follow them.
|
408 |
|
@@ -479,189 +479,6 @@ def groq_chart(csv_url: str, question: str):
|
|
479 |
|
480 |
|
481 |
|
482 |
-
# def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
|
483 |
-
# global current_langchain_chart_key_index, current_langchain_chart_lock
|
484 |
-
|
485 |
-
# data = clean_data(csv_url)
|
486 |
-
|
487 |
-
# for attempt in range(len(groq_api_keys)):
|
488 |
-
# try:
|
489 |
-
# with current_langchain_chart_lock:
|
490 |
-
# api_key = groq_api_keys[current_langchain_chart_key_index]
|
491 |
-
# current_key = current_langchain_chart_key_index
|
492 |
-
# current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)
|
493 |
-
|
494 |
-
# llm = ChatGroq(model=model_name, api_key=api_key)
|
495 |
-
# tool = PythonAstREPLTool(locals={
|
496 |
-
# "df": data,
|
497 |
-
# "pd": pd,
|
498 |
-
# "np": np,
|
499 |
-
# "plt": plt,
|
500 |
-
# "sns": sns,
|
501 |
-
# "matplotlib": matplotlib,
|
502 |
-
# "uuid": uuid
|
503 |
-
# })
|
504 |
-
|
505 |
-
# agent = create_pandas_dataframe_agent(
|
506 |
-
# llm,
|
507 |
-
# data,
|
508 |
-
# agent_type="openai-tools",
|
509 |
-
# verbose=True,
|
510 |
-
# allow_dangerous_code=True,
|
511 |
-
# extra_tools=[tool],
|
512 |
-
# return_intermediate_steps=True
|
513 |
-
# )
|
514 |
-
|
515 |
-
# result = agent.invoke({"input": _prompt_generator(question, True)})
|
516 |
-
# output = result.get("output", "")
|
517 |
-
|
518 |
-
# # Verify chart file creation
|
519 |
-
# chart_files = extract_chart_filenames(output)
|
520 |
-
# if len(chart_files) > 0:
|
521 |
-
# return chart_files
|
522 |
-
|
523 |
-
# if attempt < len(groq_api_keys) - 1:
|
524 |
-
# print(f"Langchain chart error (key {current_key}): {output}")
|
525 |
-
|
526 |
-
# except Exception as e:
|
527 |
-
# print(f"Langchain chart error (key {current_key}): {str(e)}")
|
528 |
-
|
529 |
-
# return "Chart generation failed after all retries"
|
530 |
-
|
531 |
-
# @app.post("/api/csv-chart")
|
532 |
-
# async def csv_chart(request: dict, authorization: str = Header(None)):
|
533 |
-
# # Authorization verification
|
534 |
-
# if not authorization or not authorization.startswith("Bearer "):
|
535 |
-
# raise HTTPException(status_code=401, detail="Authorization required")
|
536 |
-
|
537 |
-
# token = authorization.split(" ")[1]
|
538 |
-
# if token != os.getenv("AUTH_TOKEN"):
|
539 |
-
# raise HTTPException(status_code=403, detail="Invalid credentials")
|
540 |
-
|
541 |
-
# try:
|
542 |
-
# query = request.get("query", "")
|
543 |
-
# csv_url = unquote(request.get("csv_url", ""))
|
544 |
-
|
545 |
-
# # Parallel processing with thread pool
|
546 |
-
# if if_initial_chart_question(query):
|
547 |
-
# chart_paths = await asyncio.to_thread(
|
548 |
-
# langchain_csv_chart, csv_url, query, True
|
549 |
-
# )
|
550 |
-
# print(chart_paths)
|
551 |
-
|
552 |
-
# if len(chart_paths) > 0:
|
553 |
-
# return FileResponse(f"{image_file_path}/{chart_paths[0]}", media_type="image/png")
|
554 |
-
|
555 |
-
# # Groq-based chart generation
|
556 |
-
# groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
|
557 |
-
# print(f"Generated Chart: {groq_result}")
|
558 |
-
# if groq_result != 'Chart not generated':
|
559 |
-
# return FileResponse(groq_result, media_type="image/png")
|
560 |
-
|
561 |
-
|
562 |
-
# # Fallback to Langchain
|
563 |
-
# langchain_paths = await asyncio.to_thread(
|
564 |
-
# langchain_csv_chart, csv_url, query, True
|
565 |
-
# )
|
566 |
-
|
567 |
-
# print (langchain_paths)
|
568 |
-
|
569 |
-
# if len(langchain_paths) > 0:
|
570 |
-
# return FileResponse(f"{image_file_path}/{langchain_paths[0]}", media_type="image/png")
|
571 |
-
# else:
|
572 |
-
# return {"error": "All chart generation methods failed"}
|
573 |
-
|
574 |
-
# except Exception as e:
|
575 |
-
# print(f"Critical chart error: {str(e)}")
|
576 |
-
# return {"error": "Internal system error"}
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
# MERGED CALL
|
584 |
-
|
585 |
-
# class CSVData(BaseModel):
|
586 |
-
# csv_url: str
|
587 |
-
# query: str
|
588 |
-
# chart_required: bool
|
589 |
-
|
590 |
-
# @app.post("/api/v1/csv_chat")
|
591 |
-
# async def csv_chat(csv_data: CSVData, authorization: str = Header(None)):
|
592 |
-
# # Authorization verification
|
593 |
-
# if not authorization or not authorization.startswith("Bearer "):
|
594 |
-
# raise HTTPException(status_code=401, detail="Authorization required")
|
595 |
-
|
596 |
-
# token = authorization.split(" ")[1]
|
597 |
-
# if token != os.getenv("AUTH_TOKEN"):
|
598 |
-
# raise HTTPException(status_code=403, detail="Invalid credentials")
|
599 |
-
|
600 |
-
# csv_url = csv_data.csv_url
|
601 |
-
# query = csv_data.query
|
602 |
-
# chart_required = csv_data.chart_required
|
603 |
-
|
604 |
-
# if(chart_required == True):
|
605 |
-
# try:
|
606 |
-
# # Parallel processing with thread pool
|
607 |
-
# if if_initial_chart_question(query):
|
608 |
-
# chart_path = await asyncio.to_thread(
|
609 |
-
# langchain_csv_chart, csv_url, query, True
|
610 |
-
# )
|
611 |
-
# if "temp" in chart_path:
|
612 |
-
# print("langchain chart Generated")
|
613 |
-
# return FileResponse('temp.png', media_type="image/png")
|
614 |
-
# return {"error": "Chart generation failed"}
|
615 |
-
|
616 |
-
# # Groq-based chart generation
|
617 |
-
# groq_result = await asyncio.to_thread(groq_chart, csv_url, query)
|
618 |
-
# if groq_result == "Chart Generated":
|
619 |
-
# return FileResponse("exports/charts/temp_chart.png")
|
620 |
-
# # Fallback to Langchain
|
621 |
-
# langchain_path = await asyncio.to_thread(
|
622 |
-
# langchain_csv_chart, csv_url, query, True
|
623 |
-
# )
|
624 |
-
# if "temp" in langchain_path:
|
625 |
-
# print("langchain chart Generated")
|
626 |
-
# return FileResponse('temp.png', media_type="image/png")
|
627 |
-
# return {"error": "All chart generation methods failed"}
|
628 |
-
|
629 |
-
# except Exception as e:
|
630 |
-
# print(f"Critical chart error: {str(e)}")
|
631 |
-
# raise HTTPException(status_code=500, detail="Internal server error")
|
632 |
-
# else:
|
633 |
-
# try:
|
634 |
-
# if if_initial_chat_question(query):
|
635 |
-
# answer = await asyncio.to_thread(
|
636 |
-
# langchain_csv_chat, csv_url, query, False
|
637 |
-
# )
|
638 |
-
# print("langchain_answer:", answer)
|
639 |
-
# return {"answer": jsonable_encoder(answer)}
|
640 |
-
|
641 |
-
# # Process with groq_chat first
|
642 |
-
# groq_answer = await asyncio.to_thread(groq_chat, csv_url, query)
|
643 |
-
# print("groq_answer:", groq_answer)
|
644 |
-
|
645 |
-
# if process_answer(groq_answer) == "Empty response received.":
|
646 |
-
# return {"answer": "Sorry, I couldn't find relevant data..."}
|
647 |
-
|
648 |
-
# if process_answer(groq_answer):
|
649 |
-
# lang_answer = await asyncio.to_thread(
|
650 |
-
# langchain_csv_chat, csv_url, query, False
|
651 |
-
# )
|
652 |
-
# if process_answer(lang_answer):
|
653 |
-
# return {"answer": "error"}
|
654 |
-
# return {"answer": jsonable_encoder(lang_answer)}
|
655 |
-
|
656 |
-
# return {"answer": jsonable_encoder(groq_answer)}
|
657 |
-
|
658 |
-
# except Exception as e:
|
659 |
-
# print(f"Error processing request: {str(e)}")
|
660 |
-
# raise HTTPException(status_code=500, detail="Internal server error")
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
|
666 |
# Global locks for key rotation (chart endpoints)
|
667 |
# current_groq_chart_key_index = 0
|
@@ -673,86 +490,6 @@ current_langchain_chart_lock = threading.Lock()
|
|
673 |
# Use a process pool to run CPU-bound charts generation
|
674 |
process_executor = ProcessPoolExecutor(max_workers=max_cpus-2)
|
675 |
|
676 |
-
# --- GROQ-BASED CHART GENERATION ---
|
677 |
-
# def groq_chart(csv_url: str, question: str):
|
678 |
-
# """
|
679 |
-
# Generate a chart using the groq-based method.
|
680 |
-
# Modifications:
|
681 |
-
# • No deletion of a shared cache file (avoid interference).
|
682 |
-
# • After chart generation, close all matplotlib figures.
|
683 |
-
# • Return the full path of the saved chart.
|
684 |
-
# """
|
685 |
-
# global current_groq_chart_key_index, current_groq_chart_lock
|
686 |
-
|
687 |
-
# for attempt in range(len(groq_api_keys)):
|
688 |
-
# try:
|
689 |
-
# # Instead of deleting a global cache file, you might later configure a per-request cache.
|
690 |
-
# cache_db_path = "/app/cache/cache_db_0.11.db"
|
691 |
-
# if os.path.exists(cache_db_path):
|
692 |
-
# try:
|
693 |
-
# os.remove(cache_db_path)
|
694 |
-
# print(f"Deleted cache DB file: {cache_db_path}")
|
695 |
-
# except Exception as e:
|
696 |
-
# print(f"Error deleting cache DB file: {e}")
|
697 |
-
|
698 |
-
# chart_dir = "generated_charts"
|
699 |
-
# if not os.path.exists(chart_dir):
|
700 |
-
# os.makedirs(chart_dir)
|
701 |
-
|
702 |
-
# data = clean_data(csv_url)
|
703 |
-
# with current_groq_chart_lock:
|
704 |
-
# current_api_key = groq_api_keys[current_groq_chart_key_index]
|
705 |
-
|
706 |
-
# llm = ChatGroq(model=model_name, api_key=current_api_key)
|
707 |
-
|
708 |
-
# # Generate a unique filename and full path for the chart
|
709 |
-
# chart_filename = f"chart_{uuid.uuid4().hex}.png"
|
710 |
-
# chart_path = os.path.join("generated_charts", chart_filename)
|
711 |
-
|
712 |
-
# # Configure your dataframe tool (e.g. using SmartDataframe) to save charts.
|
713 |
-
# # (Assuming your SmartDataframe uses these settings to save charts.)
|
714 |
-
# from pandasai import SmartDataframe # Import here if not already imported
|
715 |
-
# df = SmartDataframe(
|
716 |
-
# data,
|
717 |
-
# config={
|
718 |
-
# 'llm': llm,
|
719 |
-
# 'save_charts': True,
|
720 |
-
# 'open_charts': False,
|
721 |
-
# 'save_charts_path': os.path.dirname(chart_path),
|
722 |
-
# 'custom_chart_filename': chart_filename
|
723 |
-
# }
|
724 |
-
# )
|
725 |
-
|
726 |
-
# # Append any extra instructions if needed
|
727 |
-
# instructions = """
|
728 |
-
# - Ensure each value is clearly visible.
|
729 |
-
# - Adjust font sizes, rotate labels if necessary.
|
730 |
-
# - Use a colorblind-friendly palette.
|
731 |
-
# - Arrange multiple charts in a grid if needed.
|
732 |
-
# """
|
733 |
-
# answer = df.chat(question + instructions)
|
734 |
-
|
735 |
-
# # Make sure to close figures so they don't conflict between processes
|
736 |
-
# plt.close('all')
|
737 |
-
|
738 |
-
# # If process_answer indicates a problem, return a failure message.
|
739 |
-
# if process_answer(answer):
|
740 |
-
# return "Chart not generated"
|
741 |
-
# # Return the chart path that was used for saving
|
742 |
-
# return chart_path
|
743 |
-
|
744 |
-
# except Exception as e:
|
745 |
-
# error = str(e)
|
746 |
-
# if "429" in error:
|
747 |
-
# with current_groq_chart_lock:
|
748 |
-
# current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
|
749 |
-
# else:
|
750 |
-
# print(f"Groq chart generation error: {error}")
|
751 |
-
# return {"error": error}
|
752 |
-
|
753 |
-
# return {"error": "All API keys exhausted for chart generation"}
|
754 |
-
|
755 |
-
|
756 |
# --- LANGCHAIN-BASED CHART GENERATION ---
|
757 |
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
|
758 |
"""
|
|
|
402 |
instructions = """
|
403 |
|
404 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
405 |
+
- For multiple charts, arrange them in a format (2x2, 3x3, etc.)
|
406 |
- Use colorblind-friendly palette
|
407 |
- Read above instructions and follow them.
|
408 |
|
|
|
479 |
|
480 |
|
481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
# Global locks for key rotation (chart endpoints)
|
484 |
# current_groq_chart_key_index = 0
|
|
|
490 |
# Use a process pool to run CPU-bound charts generation
|
491 |
process_executor = ProcessPoolExecutor(max_workers=max_cpus-2)
|
492 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
# --- LANGCHAIN-BASED CHART GENERATION ---
|
494 |
def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
|
495 |
"""
|
gemini_langchain_agent.py
CHANGED
@@ -128,206 +128,3 @@ def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bo
|
|
128 |
print("All LLM instances have been exhausted.")
|
129 |
return None
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
# import os
|
145 |
-
# import re
|
146 |
-
# import uuid
|
147 |
-
# from langchain_google_genai import ChatGoogleGenerativeAI
|
148 |
-
# import pandas as pd
|
149 |
-
# from langchain_core.prompts import ChatPromptTemplate
|
150 |
-
# from langchain_experimental.tools import PythonAstREPLTool
|
151 |
-
# from langchain_experimental.agents import create_pandas_dataframe_agent
|
152 |
-
# from dotenv import load_dotenv
|
153 |
-
# import numpy as np
|
154 |
-
# import matplotlib.pyplot as plt
|
155 |
-
# import matplotlib
|
156 |
-
# import seaborn as sns
|
157 |
-
# import datetime as dt
|
158 |
-
|
159 |
-
# # Set the backend for matplotlib to 'Agg' to avoid GUI issues
|
160 |
-
# matplotlib.use('Agg')
|
161 |
-
|
162 |
-
# load_dotenv()
|
163 |
-
# model_name = 'gemini-2.0-flash' # Specify the model name
|
164 |
-
# google_api_keys = os.getenv("GEMINI_API_KEYS").split(",")
|
165 |
-
|
166 |
-
# # Create pre-initialized LLM instances
|
167 |
-
# llm_instances = [
|
168 |
-
# ChatGoogleGenerativeAI(model=model_name, api_key=key)
|
169 |
-
# for key in google_api_keys
|
170 |
-
# ]
|
171 |
-
# current_instance_index = 0 # Track current instance being used
|
172 |
-
|
173 |
-
# def is_retryable_error(error: Exception) -> bool:
|
174 |
-
# """Check if the error should trigger a retry with next instance"""
|
175 |
-
# error_str = str(error).lower()
|
176 |
-
|
177 |
-
# retry_conditions = [
|
178 |
-
# # Rate limiting and quota errors
|
179 |
-
# '429' in error_str,
|
180 |
-
# 'quota' in error_str,
|
181 |
-
# 'rate limit' in error_str,
|
182 |
-
# 'resource exhausted' in error_str,
|
183 |
-
# 'exceeded' in error_str,
|
184 |
-
# 'limit reached' in error_str,
|
185 |
-
|
186 |
-
# # Authentication and permission errors
|
187 |
-
# 'permission denied' in error_str,
|
188 |
-
# 'invalid api key' in error_str,
|
189 |
-
# 'authentication' in error_str,
|
190 |
-
|
191 |
-
# # Server errors
|
192 |
-
# '500' in error_str,
|
193 |
-
# '503' in error_str,
|
194 |
-
# 'service unavailable' in error_str,
|
195 |
-
|
196 |
-
# # Connection issues
|
197 |
-
# 'timeout' in error_str,
|
198 |
-
# 'connection' in error_str,
|
199 |
-
|
200 |
-
# # Content policy
|
201 |
-
# 'content policy' in error_str,
|
202 |
-
# 'safety' in error_str,
|
203 |
-
# 'blocked' in error_str
|
204 |
-
# ]
|
205 |
-
|
206 |
-
# return any(retry_conditions)
|
207 |
-
|
208 |
-
# def create_agent(llm, data, tools):
|
209 |
-
# """Create agent with tool names"""
|
210 |
-
# return create_pandas_dataframe_agent(
|
211 |
-
# llm,
|
212 |
-
# data,
|
213 |
-
# agent_type="tool-calling",
|
214 |
-
# verbose=True,
|
215 |
-
# allow_dangerous_code=True,
|
216 |
-
# extra_tools=tools,
|
217 |
-
# return_intermediate_steps=True
|
218 |
-
# )
|
219 |
-
|
220 |
-
# def _prompt_generator(question: str, chart_required: bool):
|
221 |
-
# chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:
|
222 |
-
|
223 |
-
# 1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.
|
224 |
-
# 2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.
|
225 |
-
# 3. **Communication:** Provide concise, professional, and well-structured responses.
|
226 |
-
# 4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)
|
227 |
-
|
228 |
-
# **Query:** {question}
|
229 |
-
# """
|
230 |
-
|
231 |
-
# chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:
|
232 |
-
|
233 |
-
# 1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
|
234 |
-
# 2. Visualization requirements:
|
235 |
-
# - Adjust font sizes, rotate labels (45° if needed), truncate for readability
|
236 |
-
# - Figure size: (12, 6)
|
237 |
-
# - Descriptive titles (fontsize=14)
|
238 |
-
# - Colorblind-friendly palettes
|
239 |
-
# 3. File handling rules:
|
240 |
-
# - Create MAXIMUM 2 charts if absolutely necessary
|
241 |
-
# - For multiple charts:
|
242 |
-
# * Arrange in grid format (2x1 vertical layout preferred)
|
243 |
-
# * Use SAME unique_id with suffixes:
|
244 |
-
# - f"{{unique_id}}_1.png"
|
245 |
-
# - f"{{unique_id}}_2.png"
|
246 |
-
# - Save EXCLUSIVELY to "generated_charts" folder
|
247 |
-
# - File naming: f"chart_{{unique_id}}.png" (for single chart)
|
248 |
-
# 4. FINAL OUTPUT MUST BE:
|
249 |
-
# - For single chart: f"generated_charts/chart_{{unique_id}}.png"
|
250 |
-
# - For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
|
251 |
-
# - **ONLY return this full path string, nothing else**
|
252 |
-
|
253 |
-
# **Query:** {question}
|
254 |
-
|
255 |
-
# IMPORTANT:
|
256 |
-
# - Generate the unique_id FIRST before any operations
|
257 |
-
# - Use THE SAME unique_id throughout entire process
|
258 |
-
# - NEVER generate new UUIDs after initial creation
|
259 |
-
# - Return EXACT filepath string of the final saved chart
|
260 |
-
# """
|
261 |
-
|
262 |
-
# if chart_required:
|
263 |
-
# return ChatPromptTemplate.from_template(chart_prompt)
|
264 |
-
# else:
|
265 |
-
# return ChatPromptTemplate.from_template(chat_prompt)
|
266 |
-
|
267 |
-
# def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
|
268 |
-
# global current_instance_index
|
269 |
-
# data = pd.read_csv(csv_url)
|
270 |
-
|
271 |
-
# # Track first error in case all instances fail
|
272 |
-
# first_error = None
|
273 |
-
|
274 |
-
# while current_instance_index < len(llm_instances):
|
275 |
-
# try:
|
276 |
-
# llm = llm_instances[current_instance_index]
|
277 |
-
# print(f"Attempting with LLM instance {current_instance_index + 1}/{len(llm_instances)}")
|
278 |
-
|
279 |
-
# # Create tool with validated name
|
280 |
-
# tool = PythonAstREPLTool(
|
281 |
-
# locals={
|
282 |
-
# "df": data,
|
283 |
-
# "pd": pd,
|
284 |
-
# "np": np,
|
285 |
-
# "plt": plt,
|
286 |
-
# "sns": sns,
|
287 |
-
# "matplotlib": matplotlib,
|
288 |
-
# "uuid": uuid,
|
289 |
-
# "dt": dt
|
290 |
-
# },
|
291 |
-
# )
|
292 |
-
|
293 |
-
# agent = create_agent(llm, data, [tool])
|
294 |
-
# prompt = _prompt_generator(question, chart_required)
|
295 |
-
# result = agent.invoke({"input": prompt})
|
296 |
-
# output = result.get("output")
|
297 |
-
|
298 |
-
# if output is None:
|
299 |
-
# raise ValueError("Received None response from agent")
|
300 |
-
|
301 |
-
# if isinstance(output, str) and any(err in output.lower() for err in ['quota', 'limit', 'exhausted']):
|
302 |
-
# raise ValueError(f"API limitation detected in response: {output}")
|
303 |
-
|
304 |
-
# return output
|
305 |
-
|
306 |
-
# except Exception as e:
|
307 |
-
# error_msg = f"Error with instance {current_instance_index}: {str(e)}"
|
308 |
-
# print(error_msg)
|
309 |
-
|
310 |
-
# # Store first error if not set
|
311 |
-
# if first_error is None:
|
312 |
-
# first_error = error_msg
|
313 |
-
|
314 |
-
# # Check if we should try next instance
|
315 |
-
# if is_retryable_error(e):
|
316 |
-
# current_instance_index += 1
|
317 |
-
# continue
|
318 |
-
# else:
|
319 |
-
# # Non-retryable error - return immediately
|
320 |
-
# return {
|
321 |
-
# "error": "Non-retryable error occurred",
|
322 |
-
# "details": str(e),
|
323 |
-
# "instance": current_instance_index
|
324 |
-
# }
|
325 |
-
|
326 |
-
# # All instances exhausted
|
327 |
-
# error_response = {
|
328 |
-
# "error": "All API instances failed",
|
329 |
-
# "details": first_error or "Unknown error",
|
330 |
-
# "attempted_instances": current_instance_index
|
331 |
-
# }
|
332 |
-
# print(error_response)
|
333 |
-
# return error_response
|
|
|
128 |
print("All LLM instances have been exhausted.")
|
129 |
return None
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
groq_chart.py
CHANGED
@@ -29,7 +29,7 @@ logger = logging.getLogger(__name__)
|
|
29 |
instructions = """
|
30 |
|
31 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
32 |
-
- For multiple charts, arrange them in a
|
33 |
- Use colorblind-friendly palette
|
34 |
- Read above instructions and follow them.
|
35 |
- Please do not use any visualization library other than matplotlib or seaborn.
|
|
|
29 |
instructions = """
|
30 |
|
31 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
32 |
+
- For multiple charts, arrange them in a format (2x2, 3x3, etc.)
|
33 |
- Use colorblind-friendly palette
|
34 |
- Read above instructions and follow them.
|
35 |
- Please do not use any visualization library other than matplotlib or seaborn.
|
openai_pandasai_service.py
CHANGED
@@ -20,7 +20,7 @@ current_llm_index = 0
|
|
20 |
|
21 |
instructions = """
|
22 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
23 |
-
- For multiple charts, arrange them in a
|
24 |
- Use professional and color-blind friendly palettes.
|
25 |
- Do not use sns.set_palette()
|
26 |
- Read above instructions and follow them.
|
|
|
20 |
|
21 |
instructions = """
|
22 |
- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
|
23 |
+
- For multiple charts, arrange them in a format (2x2, 3x3, etc.)
|
24 |
- Use professional and color-blind friendly palettes.
|
25 |
- Do not use sns.set_palette()
|
26 |
- Read above instructions and follow them.
|