use supabase
Browse files- controller.py +25 -4
- requirements.txt +2 -1
- rethink_gemini_agents/gemini_langchain_service.py +0 -205
- rethink_gemini_agents/rethink_chart.py +0 -266
- rethink_gemini_agents/rethink_chat.py +0 -259
- supabase_service.py +42 -0
controller.py
CHANGED
@@ -26,6 +26,7 @@ import matplotlib.pyplot as plt
|
|
26 |
import matplotlib
|
27 |
import seaborn as sns
|
28 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
|
|
29 |
from util_service import _prompt_generator, process_answer
|
30 |
from fastapi.middleware.cors import CORSMiddleware
|
31 |
import matplotlib
|
@@ -128,7 +129,12 @@ async def get_image(request: ImageRequest, authorization: str = Header(None)):
|
|
128 |
|
129 |
try:
|
130 |
image_file_path = request.image_path
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
except Exception as e:
|
133 |
logger.error(f"Error: {e}")
|
134 |
return {"answer": "error"}
|
@@ -789,7 +795,12 @@ async def csv_chart(request: dict, authorization: str = Header(None)):
|
|
789 |
)
|
790 |
logger.info("Langchain chart result:", langchain_result)
|
791 |
if isinstance(langchain_result, list) and len(langchain_result) > 0:
|
792 |
-
|
|
|
|
|
|
|
|
|
|
|
793 |
|
794 |
# Next, try the groq-based method
|
795 |
groq_result = await loop.run_in_executor(
|
@@ -797,7 +808,12 @@ async def csv_chart(request: dict, authorization: str = Header(None)):
|
|
797 |
)
|
798 |
logger.info(f"Groq chart result: {groq_result}")
|
799 |
if isinstance(groq_result, str) and groq_result != "Chart not generated":
|
800 |
-
|
|
|
|
|
|
|
|
|
|
|
801 |
|
802 |
# Fallback: try langchain-based again
|
803 |
logger.error("Groq chart generation failed, trying langchain....")
|
@@ -806,7 +822,12 @@ async def csv_chart(request: dict, authorization: str = Header(None)):
|
|
806 |
)
|
807 |
logger.info("Fallback langchain chart result:", langchain_paths)
|
808 |
if isinstance(langchain_paths, list) and len(langchain_paths) > 0:
|
809 |
-
|
|
|
|
|
|
|
|
|
|
|
810 |
else:
|
811 |
logger.error("All chart generation methods failed")
|
812 |
return {"answer": "error"}
|
|
|
26 |
import matplotlib
|
27 |
import seaborn as sns
|
28 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
29 |
+
from supabase_service import upload_image_to_supabase
|
30 |
from util_service import _prompt_generator, process_answer
|
31 |
from fastapi.middleware.cors import CORSMiddleware
|
32 |
import matplotlib
|
|
|
129 |
|
130 |
try:
|
131 |
image_file_path = request.image_path
|
132 |
+
unique_file_name =f'{str(uuid.uuid4())}.png'
|
133 |
+
logger.info("Uploading the chart to supabase...")
|
134 |
+
image_public_url = await upload_image_to_supabase(f"{image_file_path}", unique_file_name)
|
135 |
+
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
136 |
+
return {"image_url": image_public_url}
|
137 |
+
# return FileResponse(image_file_path, media_type="image/png")
|
138 |
except Exception as e:
|
139 |
logger.error(f"Error: {e}")
|
140 |
return {"answer": "error"}
|
|
|
795 |
)
|
796 |
logger.info("Langchain chart result:", langchain_result)
|
797 |
if isinstance(langchain_result, list) and len(langchain_result) > 0:
|
798 |
+
unique_file_name =f'{str(uuid.uuid4())}.png'
|
799 |
+
logger.info("Uploading the chart to supabase...")
|
800 |
+
image_public_url = await upload_image_to_supabase(f"{langchain_result[0]}", unique_file_name)
|
801 |
+
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
802 |
+
return {"image_url": image_public_url}
|
803 |
+
# return FileResponse(langchain_result[0], media_type="image/png")
|
804 |
|
805 |
# Next, try the groq-based method
|
806 |
groq_result = await loop.run_in_executor(
|
|
|
808 |
)
|
809 |
logger.info(f"Groq chart result: {groq_result}")
|
810 |
if isinstance(groq_result, str) and groq_result != "Chart not generated":
|
811 |
+
unique_file_name =f'{str(uuid.uuid4())}.png'
|
812 |
+
logger.info("Uploading the chart to supabase...")
|
813 |
+
image_public_url = await upload_image_to_supabase(f"{groq_result}", unique_file_name)
|
814 |
+
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
815 |
+
return {"image_url": image_public_url}
|
816 |
+
# return FileResponse(groq_result, media_type="image/png")
|
817 |
|
818 |
# Fallback: try langchain-based again
|
819 |
logger.error("Groq chart generation failed, trying langchain....")
|
|
|
822 |
)
|
823 |
logger.info("Fallback langchain chart result:", langchain_paths)
|
824 |
if isinstance(langchain_paths, list) and len(langchain_paths) > 0:
|
825 |
+
unique_file_name =f'{str(uuid.uuid4())}.png'
|
826 |
+
logger.info("Uploading the chart to supabase...")
|
827 |
+
image_public_url = await upload_image_to_supabase(f"{langchain_paths[0]}", unique_file_name)
|
828 |
+
logger.info("Image uploaded to Supabase and Image URL is... ", {image_public_url})
|
829 |
+
return {"image_url": image_public_url}
|
830 |
+
# return FileResponse(langchain_paths[0], media_type="image/png")
|
831 |
else:
|
832 |
logger.error("All chart generation methods failed")
|
833 |
return {"answer": "error"}
|
requirements.txt
CHANGED
@@ -12,4 +12,5 @@ langchain_experimental==0.3.3
|
|
12 |
tabulate==0.9.0
|
13 |
gradio>=4.0.0
|
14 |
google-generativeai==0.8.3
|
15 |
-
langchain-google-genai==2.0.7
|
|
|
|
12 |
tabulate==0.9.0
|
13 |
gradio>=4.0.0
|
14 |
google-generativeai==0.8.3
|
15 |
+
langchain-google-genai==2.0.7
|
16 |
+
supabase==2.13.0
|
rethink_gemini_agents/gemini_langchain_service.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import uuid
|
4 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
-
import pandas as pd
|
6 |
-
from langchain_core.prompts import ChatPromptTemplate
|
7 |
-
from langchain_experimental.tools import PythonAstREPLTool
|
8 |
-
from langchain_experimental.agents import create_pandas_dataframe_agent
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import numpy as np
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
import matplotlib
|
13 |
-
import seaborn as sns
|
14 |
-
|
15 |
-
|
16 |
-
# Set the backend for matplotlib to 'Agg' to avoid GUI issues
|
17 |
-
matplotlib.use('Agg')
|
18 |
-
|
19 |
-
load_dotenv()
|
20 |
-
model_name = os.getenv("GOOGLE_GENERATIVE_AI_MODEL_LANGCHAIN_AGENT")
|
21 |
-
google_api_keys = os.getenv("GOOGLE_GENERATIVE_AI_API_KEYS").split(",")
|
22 |
-
current_key_index = 0 # Global index for API keys
|
23 |
-
|
24 |
-
|
25 |
-
def _prompt_generator(question: str, chart_required: bool):
|
26 |
-
|
27 |
-
chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:
|
28 |
-
|
29 |
-
1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.
|
30 |
-
2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.
|
31 |
-
3. **Communication:** Provide concise, professional, and well-structured responses.
|
32 |
-
4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)
|
33 |
-
|
34 |
-
**Query:** {question}
|
35 |
-
|
36 |
-
"""
|
37 |
-
|
38 |
-
chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:
|
39 |
-
|
40 |
-
1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
|
41 |
-
2. Visualization requirements:
|
42 |
-
- Adjust font sizes, rotate labels (45° if needed), truncate for readability
|
43 |
-
- Figure size: (12, 6)
|
44 |
-
- Descriptive titles (fontsize=14)
|
45 |
-
- Colorblind-friendly palettes
|
46 |
-
3. File handling rules:
|
47 |
-
- Create MAXIMUM 2 charts if absolutely necessary
|
48 |
-
- For multiple charts:
|
49 |
-
* Arrange in grid format (2x1 vertical layout preferred)
|
50 |
-
* Use SAME unique_id with suffixes:
|
51 |
-
- f"{{unique_id}}_1.png"
|
52 |
-
- f"{{unique_id}}_2.png"
|
53 |
-
- Save EXCLUSIVELY to "generated_charts" folder
|
54 |
-
- File naming: f"chart_{{unique_id}}.png" (for single chart)
|
55 |
-
4. FINAL OUTPUT MUST BE:
|
56 |
-
- For single chart: f"generated_charts/chart_{{unique_id}}.png"
|
57 |
-
- For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
|
58 |
-
- ONLY return this full path string, nothing else
|
59 |
-
|
60 |
-
**Query:** {question}
|
61 |
-
|
62 |
-
IMPORTANT:
|
63 |
-
- Generate the unique_id FIRST before any operations
|
64 |
-
- Use THE SAME unique_id throughout entire process
|
65 |
-
- NEVER generate new UUIDs after initial creation
|
66 |
-
- Return EXACT filepath string of the final saved chart
|
67 |
-
"""
|
68 |
-
|
69 |
-
|
70 |
-
if chart_required:
|
71 |
-
return ChatPromptTemplate.from_template(chart_prompt)
|
72 |
-
else:
|
73 |
-
return ChatPromptTemplate.from_template(chat_prompt)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
def langchain_gemini_csv_chat(csv_url: str, question: str, chart_required: bool):
|
78 |
-
global current_key_index
|
79 |
-
|
80 |
-
data = pd.read_csv(csv_url)
|
81 |
-
# Try each API key until a successful response is generated or keys run out
|
82 |
-
attempts = 0
|
83 |
-
total_keys = len(google_api_keys)
|
84 |
-
while attempts < total_keys:
|
85 |
-
try:
|
86 |
-
# Select the current API key
|
87 |
-
api_key = google_api_keys[current_key_index]
|
88 |
-
print(f"Using API key index {current_key_index}")
|
89 |
-
|
90 |
-
# Initialize the LLM with the current API key
|
91 |
-
llm = ChatGoogleGenerativeAI(model=model_name, api_key=api_key)
|
92 |
-
|
93 |
-
# Prepare the Python REPL tool with the dataframe and necessary libraries
|
94 |
-
tool = PythonAstREPLTool(locals={
|
95 |
-
"df": data,
|
96 |
-
"pd": pd,
|
97 |
-
"np": np,
|
98 |
-
"plt": plt, # Ensure plt is available
|
99 |
-
"sns": sns,
|
100 |
-
"matplotlib": matplotlib,
|
101 |
-
"uuid": uuid,
|
102 |
-
})
|
103 |
-
|
104 |
-
# Create the pandas agent with the provided tools and settings
|
105 |
-
agent = create_pandas_dataframe_agent(
|
106 |
-
llm,
|
107 |
-
data,
|
108 |
-
agent_type="openai-tools",
|
109 |
-
verbose=True,
|
110 |
-
allow_dangerous_code=True,
|
111 |
-
extra_tools=[tool],
|
112 |
-
return_intermediate_steps=True
|
113 |
-
)
|
114 |
-
|
115 |
-
chat_prompt = _prompt_generator(question, chart_required)
|
116 |
-
# Attempt to invoke the agent with the question
|
117 |
-
result = agent.invoke({"input": chat_prompt})
|
118 |
-
# If successful, return the output
|
119 |
-
return result.get("output")
|
120 |
-
|
121 |
-
except Exception as e:
|
122 |
-
# Log the error along with the current API key index
|
123 |
-
print(f"Error using API key index {current_key_index}: {e}")
|
124 |
-
|
125 |
-
# Move to the next API key
|
126 |
-
current_key_index += 1
|
127 |
-
attempts += 1
|
128 |
-
|
129 |
-
# If all keys have been exhausted, exit the loop
|
130 |
-
if current_key_index >= total_keys:
|
131 |
-
print("All API keys have been exhausted.")
|
132 |
-
return None
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
def langchain_gemini_csv_chart(csv_url: str, question: str, chart_required: bool):
|
138 |
-
global current_key_index
|
139 |
-
data = pd.read_csv(csv_url)
|
140 |
-
|
141 |
-
# Try each API key until a successful response is generated or keys run out
|
142 |
-
attempts = 0
|
143 |
-
total_keys = len(google_api_keys)
|
144 |
-
while attempts < total_keys:
|
145 |
-
try:
|
146 |
-
# Select the current API key
|
147 |
-
api_key = google_api_keys[current_key_index]
|
148 |
-
print(f"Using API key index {current_key_index}")
|
149 |
-
|
150 |
-
# Initialize the LLM with the current API key
|
151 |
-
llm = ChatGoogleGenerativeAI(model=model_name, api_key=api_key)
|
152 |
-
|
153 |
-
# Prepare the Python REPL tool with the dataframe and necessary libraries
|
154 |
-
tool = PythonAstREPLTool(locals={
|
155 |
-
"df": data,
|
156 |
-
"pd": pd,
|
157 |
-
"np": np,
|
158 |
-
"plt": plt, # Ensure plt is available
|
159 |
-
"sns": sns,
|
160 |
-
"matplotlib": matplotlib
|
161 |
-
})
|
162 |
-
|
163 |
-
# Create the pandas agent with the provided tools and settings
|
164 |
-
agent = create_pandas_dataframe_agent(
|
165 |
-
llm,
|
166 |
-
data,
|
167 |
-
agent_type="openai-tools",
|
168 |
-
verbose=True,
|
169 |
-
allow_dangerous_code=True,
|
170 |
-
extra_tools=[tool],
|
171 |
-
return_intermediate_steps=True
|
172 |
-
)
|
173 |
-
|
174 |
-
chart_prompt = _prompt_generator(question, chart_required)
|
175 |
-
# Attempt to invoke the agent with the question
|
176 |
-
result = agent.invoke({"input": chart_prompt})
|
177 |
-
# If successful, return the output
|
178 |
-
return result.get("output")
|
179 |
-
|
180 |
-
except Exception as e:
|
181 |
-
# Log the error along with the current API key index
|
182 |
-
print(f"Error using API key index {current_key_index}: {e}")
|
183 |
-
|
184 |
-
# Move to the next API key
|
185 |
-
current_key_index += 1
|
186 |
-
attempts += 1
|
187 |
-
|
188 |
-
# If all keys have been exhausted, exit the loop
|
189 |
-
if current_key_index >= total_keys:
|
190 |
-
print("All API keys have been exhausted.")
|
191 |
-
return None
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
# Example usage:
|
200 |
-
if __name__ == "__main__":
|
201 |
-
csv_url = "./documents/titanic.csv"
|
202 |
-
question = "Create a pie chart of males vs females"
|
203 |
-
output = langchain_gemini_csv_chat(csv_url, question, True)
|
204 |
-
print("Agent output:", output)
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rethink_gemini_agents/rethink_chart.py
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import re
|
3 |
-
import os
|
4 |
-
import uuid
|
5 |
-
import logging
|
6 |
-
from io import StringIO
|
7 |
-
import sys
|
8 |
-
import traceback
|
9 |
-
from typing import Optional, Dict, Any, List
|
10 |
-
from pydantic import BaseModel, Field
|
11 |
-
from google.generativeai import GenerativeModel, configure
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
|
14 |
-
# Load environment variables from .env file
|
15 |
-
load_dotenv()
|
16 |
-
|
17 |
-
API_KEYS = os.getenv("GOOGLE_GENERATIVE_AI_API_KEYS", "").split(",")
|
18 |
-
MODEL_NAME = os.getenv("GOOGLE_GENERATIVE_AI_MODEL")
|
19 |
-
|
20 |
-
# Set up non-interactive matplotlib backend
|
21 |
-
os.environ['MPLBACKEND'] = 'agg'
|
22 |
-
import matplotlib.pyplot as plt
|
23 |
-
plt.show = lambda: None # Monkey patch to disable display
|
24 |
-
|
25 |
-
# Configure logging
|
26 |
-
logging.basicConfig(
|
27 |
-
level=logging.INFO,
|
28 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
29 |
-
handlers=[logging.FileHandler('api_key_rotation.log'), logging.StreamHandler()]
|
30 |
-
)
|
31 |
-
logger = logging.getLogger(__name__)
|
32 |
-
|
33 |
-
class GeminiKeyManager:
|
34 |
-
"""Manage multiple Gemini API keys with failover"""
|
35 |
-
|
36 |
-
def __init__(self, api_keys: List[str]):
|
37 |
-
self.original_keys = api_keys.copy()
|
38 |
-
self.available_keys = api_keys.copy()
|
39 |
-
self.active_key = None
|
40 |
-
self.failed_keys = {}
|
41 |
-
|
42 |
-
def configure(self) -> bool:
|
43 |
-
"""Try to configure API with available keys"""
|
44 |
-
while self.available_keys:
|
45 |
-
key = self.available_keys.pop(0)
|
46 |
-
try:
|
47 |
-
configure(api_key=key)
|
48 |
-
self.active_key = key
|
49 |
-
logger.info(f"Successfully configured with key: {self._mask_key(key)}")
|
50 |
-
return True
|
51 |
-
except Exception as e:
|
52 |
-
self.failed_keys[key] = str(e)
|
53 |
-
logger.error(f"Key failed: {self._mask_key(key)}. Error: {str(e)}")
|
54 |
-
|
55 |
-
logger.critical("All API keys failed to configure")
|
56 |
-
return False
|
57 |
-
|
58 |
-
def _mask_key(self, key: str) -> str:
|
59 |
-
return f"{key[:8]}...{key[-4:]}" if key else ""
|
60 |
-
|
61 |
-
class PythonREPL:
|
62 |
-
"""Secure Python REPL with non-interactive plotting"""
|
63 |
-
|
64 |
-
def __init__(self, df: pd.DataFrame):
|
65 |
-
self.df = df
|
66 |
-
self.local_env = {
|
67 |
-
"pd": pd,
|
68 |
-
"df": self.df.copy(),
|
69 |
-
"plt": plt,
|
70 |
-
"os": os,
|
71 |
-
"uuid": uuid,
|
72 |
-
"plt": plt
|
73 |
-
}
|
74 |
-
os.makedirs('generated_charts', exist_ok=True)
|
75 |
-
|
76 |
-
def execute(self, code: str) -> Dict[str, Any]:
|
77 |
-
old_stdout = sys.stdout
|
78 |
-
sys.stdout = mystdout = StringIO()
|
79 |
-
|
80 |
-
try:
|
81 |
-
# Ensure figure closure and non-interactive mode
|
82 |
-
code = f"""
|
83 |
-
import matplotlib.pyplot as plt
|
84 |
-
plt.switch_backend('agg')
|
85 |
-
{code}
|
86 |
-
plt.close('all')
|
87 |
-
"""
|
88 |
-
exec(code, self.local_env)
|
89 |
-
self.df = self.local_env.get('df', self.df)
|
90 |
-
error = False
|
91 |
-
except Exception as e:
|
92 |
-
error_msg = traceback.format_exc()
|
93 |
-
error = True
|
94 |
-
finally:
|
95 |
-
sys.stdout = old_stdout
|
96 |
-
|
97 |
-
return {
|
98 |
-
"output": mystdout.getvalue(),
|
99 |
-
"error": error,
|
100 |
-
"error_message": error_msg if error else None,
|
101 |
-
"df": self.local_env.get('df', self.df)
|
102 |
-
}
|
103 |
-
|
104 |
-
class RethinkAgent(BaseModel):
|
105 |
-
df: pd.DataFrame
|
106 |
-
max_retries: int = Field(default=5, ge=1)
|
107 |
-
gemini_model: Optional[GenerativeModel] = None
|
108 |
-
current_retry: int = Field(default=0, ge=0)
|
109 |
-
repl: Optional[PythonREPL] = None
|
110 |
-
key_manager: Optional[GeminiKeyManager] = None
|
111 |
-
|
112 |
-
class Config:
|
113 |
-
arbitrary_types_allowed = True
|
114 |
-
|
115 |
-
def _extract_code(self, response: str) -> str:
|
116 |
-
code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
|
117 |
-
return code_match.group(1).strip() if code_match else response.strip()
|
118 |
-
|
119 |
-
def _generate_initial_prompt(self, query: str) -> str:
|
120 |
-
columns = "\n".join(self.df.columns)
|
121 |
-
return f"""
|
122 |
-
Generate Python code to analyze this DataFrame with columns:
|
123 |
-
{columns}
|
124 |
-
|
125 |
-
Query: {query}
|
126 |
-
|
127 |
-
Requirements:
|
128 |
-
1. Save visualizations to 'generated_charts/' with UUID filename
|
129 |
-
2. Use plt.savefig() with format='png'
|
130 |
-
3. No plt.show() calls allowed
|
131 |
-
4. After saving each chart, print exactly: CHART_SAVED: generated_charts/{{uuid}}.png
|
132 |
-
5. Start with 'import pandas as pd'
|
133 |
-
6. The DataFrame is available as 'df'
|
134 |
-
7. Wrap code in ```python``` blocks
|
135 |
-
"""
|
136 |
-
|
137 |
-
def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
|
138 |
-
return f"""
|
139 |
-
Previous code failed with error:
|
140 |
-
{error}
|
141 |
-
|
142 |
-
Revise this code:
|
143 |
-
{code}
|
144 |
-
|
145 |
-
New requirements:
|
146 |
-
1. Fix the error
|
147 |
-
2. Ensure plots are saved to generated_charts/
|
148 |
-
3. After saving each chart, print exactly: CHART_SAVED: generated_charts/{{uuid}}.png
|
149 |
-
4. No figure display
|
150 |
-
5. Complete query: {query}
|
151 |
-
|
152 |
-
Explain the error first, then show corrected code in ```python``` blocks
|
153 |
-
"""
|
154 |
-
|
155 |
-
def initialize_model(self, api_keys: List[str]) -> bool:
|
156 |
-
"""Initialize Gemini model with key rotation"""
|
157 |
-
self.key_manager = GeminiKeyManager(api_keys)
|
158 |
-
if not self.key_manager.configure():
|
159 |
-
raise RuntimeError("All API keys failed to initialize")
|
160 |
-
|
161 |
-
try:
|
162 |
-
self.gemini_model = GenerativeModel(MODEL_NAME)
|
163 |
-
return True
|
164 |
-
except Exception as e:
|
165 |
-
logger.error(f"Model initialization failed: {str(e)}")
|
166 |
-
return False
|
167 |
-
|
168 |
-
def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
|
169 |
-
if error:
|
170 |
-
prompt = self._generate_retry_prompt(query, error, previous_code)
|
171 |
-
else:
|
172 |
-
prompt = self._generate_initial_prompt(query)
|
173 |
-
|
174 |
-
try:
|
175 |
-
response = self.gemini_model.generate_content(prompt)
|
176 |
-
return self._extract_code(response.text)
|
177 |
-
except Exception as e:
|
178 |
-
logger.error(f"API call failed: {str(e)}")
|
179 |
-
if self.key_manager.available_keys:
|
180 |
-
logger.info("Attempting key rotation...")
|
181 |
-
if self.key_manager.configure():
|
182 |
-
self.gemini_model = GenerativeModel(MODEL_NAME)
|
183 |
-
return self.generate_code(query, error, previous_code)
|
184 |
-
raise
|
185 |
-
|
186 |
-
def execute_query(self, query: str) -> str:
|
187 |
-
self.repl = PythonREPL(self.df)
|
188 |
-
error = None
|
189 |
-
previous_code = None
|
190 |
-
|
191 |
-
while self.current_retry < self.max_retries:
|
192 |
-
try:
|
193 |
-
code = self.generate_code(query, error, previous_code)
|
194 |
-
result = self.repl.execute(code)
|
195 |
-
|
196 |
-
if result["error"]:
|
197 |
-
self.current_retry += 1
|
198 |
-
error = result["error_message"]
|
199 |
-
previous_code = code
|
200 |
-
logger.warning(f"Retry {self.current_retry}/{self.max_retries}...")
|
201 |
-
else:
|
202 |
-
self.df = result["df"]
|
203 |
-
return result["output"]
|
204 |
-
except Exception as e:
|
205 |
-
logger.error(f"Critical failure: {str(e)}")
|
206 |
-
return f"System error: {str(e)}"
|
207 |
-
|
208 |
-
return f"Failed after {self.max_retries} attempts. Last error: {error}"
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
def gemini_llm_chart(csv_url: str, query: str) -> str:
|
213 |
-
df = pd.read_csv(csv_url)
|
214 |
-
|
215 |
-
agent = RethinkAgent(df=df)
|
216 |
-
if not agent.initialize_model(API_KEYS):
|
217 |
-
print("Failed to initialize model with provided keys")
|
218 |
-
exit(1)
|
219 |
-
|
220 |
-
result = agent.execute_query(query)
|
221 |
-
print("\nAnalysis Result:")
|
222 |
-
print(result)
|
223 |
-
|
224 |
-
if isinstance(result, str):
|
225 |
-
result = result.strip() # Remove any leading/trailing spaces or newlines
|
226 |
-
|
227 |
-
match = re.search(r'CHART_SAVED:\s*(\S+)', result)
|
228 |
-
|
229 |
-
if match:
|
230 |
-
chart_path = match.group(1)
|
231 |
-
print("Chart Path:", chart_path)
|
232 |
-
return chart_path
|
233 |
-
else:
|
234 |
-
print("Chart path not found")
|
235 |
-
return "Chart path not found"
|
236 |
-
else:
|
237 |
-
print("Unexpected result format:", type(result))
|
238 |
-
return "Chart path not found"
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
# Usage Example
|
243 |
-
# if __name__ == "__main__":
|
244 |
-
# df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
|
245 |
-
|
246 |
-
# agent = RethinkAgent(df=df)
|
247 |
-
# if not agent.initialize_model(API_KEYS):
|
248 |
-
# print("Failed to initialize model with provided keys")
|
249 |
-
# exit(1)
|
250 |
-
|
251 |
-
# result = agent.execute_query("Create a scatter plot of total_bill vs tip with kernel density estimate")
|
252 |
-
# print("\nAnalysis Result:")
|
253 |
-
# print(result)
|
254 |
-
|
255 |
-
# if isinstance(result, str):
|
256 |
-
# result = result.strip() # Remove any leading/trailing spaces or newlines
|
257 |
-
|
258 |
-
# match = re.search(r'CHART_SAVED:\s*(\S+)', result)
|
259 |
-
|
260 |
-
# if match:
|
261 |
-
# chart_path = match.group(1)
|
262 |
-
# print("Chart Path:", chart_path)
|
263 |
-
# else:
|
264 |
-
# print("Chart path not found")
|
265 |
-
# else:
|
266 |
-
# print("Unexpected result format:", type(result))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rethink_gemini_agents/rethink_chat.py
DELETED
@@ -1,259 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import re
|
3 |
-
import os
|
4 |
-
import uuid
|
5 |
-
import logging
|
6 |
-
from io import StringIO
|
7 |
-
import sys
|
8 |
-
import traceback
|
9 |
-
from typing import Optional, Dict, Any, List
|
10 |
-
from pydantic import BaseModel, Field
|
11 |
-
from google.generativeai import GenerativeModel, configure
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
import seaborn as sns
|
14 |
-
from csv_service import clean_data
|
15 |
-
from util_service import handle_out_of_range_float
|
16 |
-
|
17 |
-
pd.set_option('display.max_columns', None) # Show all columns
|
18 |
-
pd.set_option('display.max_rows', None) # Show all rows
|
19 |
-
pd.set_option('display.max_colwidth', None) # Do not truncate cell content
|
20 |
-
|
21 |
-
# Load environment variables from .env file
|
22 |
-
load_dotenv()
|
23 |
-
|
24 |
-
API_KEYS = os.getenv("GOOGLE_GENERATIVE_AI_API_KEYS", "").split(",")
|
25 |
-
MODEL_NAME = os.getenv("GOOGLE_GENERATIVE_AI_MODEL")
|
26 |
-
|
27 |
-
# Set up non-interactive matplotlib backend
|
28 |
-
os.environ['MPLBACKEND'] = 'agg'
|
29 |
-
import matplotlib.pyplot as plt
|
30 |
-
plt.show = lambda: None # Monkey patch to disable display
|
31 |
-
|
32 |
-
# Configure logging
|
33 |
-
logging.basicConfig(
|
34 |
-
level=logging.INFO,
|
35 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
36 |
-
handlers=[logging.FileHandler('api_key_rotation.log'), logging.StreamHandler()]
|
37 |
-
)
|
38 |
-
logger = logging.getLogger(__name__)
|
39 |
-
|
40 |
-
class GeminiKeyManager:
|
41 |
-
"""Manage multiple Gemini API keys with failover"""
|
42 |
-
|
43 |
-
def __init__(self, api_keys: List[str]):
|
44 |
-
self.original_keys = api_keys.copy()
|
45 |
-
self.available_keys = api_keys.copy()
|
46 |
-
self.active_key = None
|
47 |
-
self.failed_keys = {}
|
48 |
-
|
49 |
-
def configure(self) -> bool:
|
50 |
-
"""Try to configure API with available keys"""
|
51 |
-
while self.available_keys:
|
52 |
-
key = self.available_keys.pop(0)
|
53 |
-
try:
|
54 |
-
configure(api_key=key)
|
55 |
-
self.active_key = key
|
56 |
-
logger.info(f"Successfully configured with key: {self._mask_key(key)}")
|
57 |
-
return True
|
58 |
-
except Exception as e:
|
59 |
-
self.failed_keys[key] = str(e)
|
60 |
-
logger.error(f"Key failed: {self._mask_key(key)}. Error: {str(e)}")
|
61 |
-
|
62 |
-
logger.critical("All API keys failed to configure")
|
63 |
-
return False
|
64 |
-
|
65 |
-
def _mask_key(self, key: str) -> str:
|
66 |
-
return f"{key[:8]}...{key[-4:]}" if key else ""
|
67 |
-
|
68 |
-
class PythonREPL:
|
69 |
-
"""Secure Python REPL with non-interactive plotting"""
|
70 |
-
|
71 |
-
def __init__(self, df: pd.DataFrame):
|
72 |
-
self.df = df
|
73 |
-
self.local_env = {
|
74 |
-
"pd": pd,
|
75 |
-
"df": self.df.copy(),
|
76 |
-
"plt": plt,
|
77 |
-
"os": os,
|
78 |
-
"uuid": uuid,
|
79 |
-
"plt": plt,
|
80 |
-
"sns": sns,
|
81 |
-
}
|
82 |
-
os.makedirs('generated_charts', exist_ok=True)
|
83 |
-
|
84 |
-
def execute(self, code: str) -> Dict[str, Any]:
|
85 |
-
old_stdout = sys.stdout
|
86 |
-
sys.stdout = mystdout = StringIO()
|
87 |
-
|
88 |
-
try:
|
89 |
-
# Ensure figure closure and non-interactive mode
|
90 |
-
code = f"""
|
91 |
-
import matplotlib.pyplot as plt
|
92 |
-
plt.switch_backend('agg')
|
93 |
-
{code}
|
94 |
-
plt.close('all')
|
95 |
-
"""
|
96 |
-
exec(code, self.local_env)
|
97 |
-
self.df = self.local_env.get('df', self.df)
|
98 |
-
error = False
|
99 |
-
except Exception as e:
|
100 |
-
error_msg = traceback.format_exc()
|
101 |
-
error = True
|
102 |
-
finally:
|
103 |
-
sys.stdout = old_stdout
|
104 |
-
|
105 |
-
return {
|
106 |
-
"output": mystdout.getvalue(),
|
107 |
-
"error": error,
|
108 |
-
"error_message": error_msg if error else None,
|
109 |
-
"df": self.local_env.get('df', self.df)
|
110 |
-
}
|
111 |
-
|
112 |
-
class RethinkAgent(BaseModel):
|
113 |
-
df: pd.DataFrame
|
114 |
-
max_retries: int = Field(default=5, ge=1)
|
115 |
-
gemini_model: Optional[GenerativeModel] = None
|
116 |
-
current_retry: int = Field(default=0, ge=0)
|
117 |
-
repl: Optional[PythonREPL] = None
|
118 |
-
key_manager: Optional[GeminiKeyManager] = None
|
119 |
-
|
120 |
-
class Config:
|
121 |
-
arbitrary_types_allowed = True
|
122 |
-
|
123 |
-
def _extract_code(self, response: str) -> str:
|
124 |
-
code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
|
125 |
-
return code_match.group(1).strip() if code_match else response.strip()
|
126 |
-
|
127 |
-
def _generate_initial_prompt(self, query: str) -> str:
|
128 |
-
columns = "\n".join(self.df.columns)
|
129 |
-
return f"""
|
130 |
-
You are a data analyst assistant. Generate Python code to analyze this DataFrame with columns:
|
131 |
-
{columns}
|
132 |
-
|
133 |
-
Query: {query}
|
134 |
-
|
135 |
-
Requirements:
|
136 |
-
1. Use print() to show results
|
137 |
-
2. Start with 'import pandas as pd'
|
138 |
-
3. The DataFrame is available as 'df'
|
139 |
-
4. Wrap code in ```python``` blocks
|
140 |
-
"""
|
141 |
-
|
142 |
-
def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
|
143 |
-
return f"""
|
144 |
-
Previous code failed with error:
|
145 |
-
{error}
|
146 |
-
|
147 |
-
Failed code:
|
148 |
-
{code}
|
149 |
-
|
150 |
-
Revise the code to fix the error and complete this query:
|
151 |
-
{query}
|
152 |
-
|
153 |
-
Requirements:
|
154 |
-
1. Explain the error first
|
155 |
-
2. Show corrected code in ```python``` blocks
|
156 |
-
"""
|
157 |
-
|
158 |
-
def initialize_model(self, api_keys: List[str]) -> bool:
|
159 |
-
"""Initialize Gemini model with key rotation"""
|
160 |
-
self.key_manager = GeminiKeyManager(api_keys)
|
161 |
-
if not self.key_manager.configure():
|
162 |
-
raise RuntimeError("All API keys failed to initialize")
|
163 |
-
|
164 |
-
try:
|
165 |
-
self.gemini_model = GenerativeModel(MODEL_NAME)
|
166 |
-
return True
|
167 |
-
except Exception as e:
|
168 |
-
logger.error(f"Model initialization failed: {str(e)}")
|
169 |
-
return False
|
170 |
-
|
171 |
-
def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
|
172 |
-
if error:
|
173 |
-
prompt = self._generate_retry_prompt(query, error, previous_code)
|
174 |
-
else:
|
175 |
-
prompt = self._generate_initial_prompt(query)
|
176 |
-
|
177 |
-
try:
|
178 |
-
response = self.gemini_model.generate_content(prompt)
|
179 |
-
return self._extract_code(response.text)
|
180 |
-
except Exception as e:
|
181 |
-
logger.error(f"API call failed: {str(e)}")
|
182 |
-
if self.key_manager.available_keys:
|
183 |
-
logger.info("Attempting key rotation...")
|
184 |
-
if self.key_manager.configure():
|
185 |
-
self.gemini_model = GenerativeModel(MODEL_NAME)
|
186 |
-
return self.generate_code(query, error, previous_code)
|
187 |
-
raise
|
188 |
-
|
189 |
-
def execute_query(self, query: str) -> str:
|
190 |
-
self.repl = PythonREPL(self.df)
|
191 |
-
error = None
|
192 |
-
previous_code = None
|
193 |
-
|
194 |
-
while self.current_retry < self.max_retries:
|
195 |
-
try:
|
196 |
-
code = self.generate_code(query, error, previous_code)
|
197 |
-
result = self.repl.execute(code)
|
198 |
-
|
199 |
-
if result["error"]:
|
200 |
-
self.current_retry += 1
|
201 |
-
error = result["error_message"]
|
202 |
-
previous_code = code
|
203 |
-
logger.warning(f"Retry {self.current_retry}/{self.max_retries}...")
|
204 |
-
else:
|
205 |
-
self.df = result["df"]
|
206 |
-
return result["output"]
|
207 |
-
except Exception as e:
|
208 |
-
logger.error(f"Critical failure: {str(e)}")
|
209 |
-
return f"System error: {str(e)}"
|
210 |
-
|
211 |
-
return f"Failed after {self.max_retries} attempts. Last error: {error}"
|
212 |
-
|
213 |
-
|
214 |
-
def gemini_llm_chat(csv_url: str, query: str) -> str:
|
215 |
-
|
216 |
-
try:
|
217 |
-
# Assuming clean_data and RethinkAgent are defined elsewhere
|
218 |
-
df = clean_data(csv_url)
|
219 |
-
agent = RethinkAgent(df=df)
|
220 |
-
|
221 |
-
# Assuming API_KEYS is defined elsewhere
|
222 |
-
if not agent.initialize_model(API_KEYS):
|
223 |
-
print("Failed to initialize model with provided keys")
|
224 |
-
exit(1)
|
225 |
-
|
226 |
-
result = agent.execute_query(query)
|
227 |
-
|
228 |
-
# Process different response types
|
229 |
-
if isinstance(result, pd.DataFrame):
|
230 |
-
processed = result.apply(handle_out_of_range_float).to_dict(orient="records")
|
231 |
-
elif isinstance(result, pd.Series):
|
232 |
-
processed = result.apply(handle_out_of_range_float).to_dict()
|
233 |
-
elif isinstance(result, list):
|
234 |
-
processed = [handle_out_of_range_float(item) for item in result]
|
235 |
-
elif isinstance(result, dict):
|
236 |
-
processed = {k: handle_out_of_range_float(v) for k, v in result.items()}
|
237 |
-
else:
|
238 |
-
processed = {"answer": str(handle_out_of_range_float(result))}
|
239 |
-
|
240 |
-
logger.info(f"gemini processed result: {processed}")
|
241 |
-
return processed
|
242 |
-
except Exception as e:
|
243 |
-
logger.error(f"Error in gemini_llm_chat: {str(e)}")
|
244 |
-
return None
|
245 |
-
|
246 |
-
# uvicorn controller:app --host localhost --port 8000 --reload
|
247 |
-
|
248 |
-
# Usage Example
|
249 |
-
# if __name__ == "__main__":
|
250 |
-
# df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
|
251 |
-
|
252 |
-
# agent = RethinkAgent(df=df)
|
253 |
-
# if not agent.initialize_model(API_KEYS):
|
254 |
-
# print("Failed to initialize model with provided keys")
|
255 |
-
# exit(1)
|
256 |
-
|
257 |
-
# result = agent.execute_query("How many rows and cols r there and what r their names?")
|
258 |
-
# print("\nAnalysis Result:")
|
259 |
-
# print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
supabase_service.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from supabase import create_client, Client
|
3 |
+
|
4 |
+
# Replace with your Supabase URL and API key
|
5 |
+
SUPABASE_URL: str = os.getenv("SUPABASE_URL")
|
6 |
+
SUPABASE_KEY: str = os.getenv("SUPABASE_KEY")
|
7 |
+
|
8 |
+
# Initialize the Supabase client
|
9 |
+
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
10 |
+
|
11 |
+
# Define the bucket name (you can create one in the Supabase Storage section)
|
12 |
+
BUCKET_NAME = "csvcharts"
|
13 |
+
|
14 |
+
async def upload_image_to_supabase(file_path: str, file_name: str) -> str:
|
15 |
+
"""
|
16 |
+
Uploads an image to Supabase Storage and returns the public URL.
|
17 |
+
|
18 |
+
:param file_path: Path to the image file on your local machine.
|
19 |
+
:param file_name: Name to save the file as in Supabase Storage.
|
20 |
+
:return: Public URL of the uploaded image.
|
21 |
+
"""
|
22 |
+
# Check if the file exists
|
23 |
+
if not os.path.exists(file_path):
|
24 |
+
raise FileNotFoundError(f"The file {file_path} does not exist.")
|
25 |
+
|
26 |
+
# Read the file in binary mode
|
27 |
+
with open(file_path, "rb") as f:
|
28 |
+
file_data = f.read()
|
29 |
+
|
30 |
+
# Upload the file to Supabase Storage
|
31 |
+
try:
|
32 |
+
res = supabase.storage.from_(BUCKET_NAME).upload(file_name, file_data)
|
33 |
+
print("Upload response:", res) # Debugging: Print the response
|
34 |
+
except Exception as e:
|
35 |
+
raise Exception(f"Failed to upload file: {e}")
|
36 |
+
|
37 |
+
# Get the public URL of the uploaded file
|
38 |
+
public_url = supabase.storage.from_(BUCKET_NAME).get_public_url(file_name)
|
39 |
+
print("Public URL:", public_url) # Debugging: Print the public URL
|
40 |
+
|
41 |
+
return public_url
|
42 |
+
|