added together ai agent
Browse files- controller.py +10 -5
- python_code_executor_service.py +183 -0
- together_ai_instance_provider.py +69 -0
- together_ai_llama_agent.py +143 -0
controller.py
CHANGED
@@ -29,6 +29,7 @@ from gemini_report_generator import generate_csv_report
|
|
29 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
30 |
from orchestrator_agent import csv_orchestrator_chat
|
31 |
from supabase_service import upload_file_to_supabase
|
|
|
32 |
from util_service import _prompt_generator, process_answer
|
33 |
from fastapi.middleware.cors import CORSMiddleware
|
34 |
import matplotlib
|
@@ -363,11 +364,15 @@ async def csv_chat(request: Dict, authorization: str = Header(None)):
|
|
363 |
# return {"answer": jsonable_encoder(orchestrator_answer)}
|
364 |
|
365 |
# Process with groq_chat first
|
366 |
-
groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
|
367 |
-
logger.info("groq_answer:", groq_answer)
|
368 |
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
371 |
|
372 |
# if process_answer(groq_answer):
|
373 |
# lang_answer = await asyncio.to_thread(
|
@@ -377,7 +382,7 @@ async def csv_chat(request: Dict, authorization: str = Header(None)):
|
|
377 |
# return {"answer": "error"}
|
378 |
# return {"answer": jsonable_encoder(lang_answer)}
|
379 |
|
380 |
-
return {"answer": jsonable_encoder(groq_answer)}
|
381 |
|
382 |
except Exception as e:
|
383 |
logger.error(f"Error processing request: {str(e)}")
|
|
|
29 |
from intitial_q_handler import if_initial_chart_question, if_initial_chat_question
|
30 |
from orchestrator_agent import csv_orchestrator_chat
|
31 |
from supabase_service import upload_file_to_supabase
|
32 |
+
from together_ai_llama_agent import query_csv_agent
|
33 |
from util_service import _prompt_generator, process_answer
|
34 |
from fastapi.middleware.cors import CORSMiddleware
|
35 |
import matplotlib
|
|
|
364 |
# return {"answer": jsonable_encoder(orchestrator_answer)}
|
365 |
|
366 |
# Process with groq_chat first
|
367 |
+
# groq_answer = await asyncio.to_thread(groq_chat, decoded_url, query)
|
368 |
+
# logger.info("groq_answer:", groq_answer)
|
369 |
|
370 |
+
result = await asyncio.to_thread(query_csv_agent, decoded_url, query)
|
371 |
+
logger.info("together ai csv answer == >", result)
|
372 |
+
return {"answer": result}
|
373 |
+
|
374 |
+
# if process_answer(groq_answer) == "Empty response received.":
|
375 |
+
# return {"answer": "Sorry, I couldn't find relevant data..."}
|
376 |
|
377 |
# if process_answer(groq_answer):
|
378 |
# lang_answer = await asyncio.to_thread(
|
|
|
382 |
# return {"answer": "error"}
|
383 |
# return {"answer": jsonable_encoder(lang_answer)}
|
384 |
|
385 |
+
# return {"answer": jsonable_encoder(groq_answer)}
|
386 |
|
387 |
except Exception as e:
|
388 |
logger.error(f"Error processing request: {str(e)}")
|
python_code_executor_service.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, Any, List, Optional
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
import io
|
8 |
+
import contextlib
|
9 |
+
import traceback
|
10 |
+
from pydantic import BaseModel
|
11 |
+
|
12 |
+
class CodeResponse(BaseModel):
|
13 |
+
"""Container for code-related responses"""
|
14 |
+
language: str = "python"
|
15 |
+
code: str
|
16 |
+
|
17 |
+
class ChartSpecification(BaseModel):
|
18 |
+
"""Details about requested charts"""
|
19 |
+
image_description: str
|
20 |
+
code: Optional[str] = None
|
21 |
+
|
22 |
+
class AnalysisOperation(BaseModel):
|
23 |
+
"""Container for a single analysis operation with its code and result"""
|
24 |
+
code: CodeResponse
|
25 |
+
description: str
|
26 |
+
|
27 |
+
class CsvChatResult(BaseModel):
|
28 |
+
"""Structured response for CSV-related AI interactions"""
|
29 |
+
response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
|
30 |
+
casual_response: str
|
31 |
+
analysis_operations: List[AnalysisOperation]
|
32 |
+
charts: Optional[List[ChartSpecification]] = None
|
33 |
+
|
34 |
+
class PythonExecutor:
|
35 |
+
"""Handles execution of Python code and dummy image generation for CSV analysis"""
|
36 |
+
|
37 |
+
def __init__(self, df: pd.DataFrame, charts_folder: str = "charts"):
|
38 |
+
"""
|
39 |
+
Initialize the PythonExecutor with a DataFrame
|
40 |
+
|
41 |
+
Args:
|
42 |
+
df (pd.DataFrame): The DataFrame to operate on
|
43 |
+
charts_folder (str): Folder to save charts in
|
44 |
+
"""
|
45 |
+
self.df = df
|
46 |
+
self.charts_folder = Path(charts_folder)
|
47 |
+
self.charts_folder.mkdir(exist_ok=True)
|
48 |
+
|
49 |
+
def execute_code(self, code: str) -> Dict[str, Any]:
|
50 |
+
"""
|
51 |
+
Execute Python code and return the output and any generated plots
|
52 |
+
|
53 |
+
Args:
|
54 |
+
code (str): Python code to execute
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
dict: Dictionary containing execution results and any generated plots
|
58 |
+
"""
|
59 |
+
output = ""
|
60 |
+
error = None
|
61 |
+
plots = []
|
62 |
+
|
63 |
+
# Capture stdout
|
64 |
+
stdout = io.StringIO()
|
65 |
+
|
66 |
+
# Monkey patch plt.show() to save figures
|
67 |
+
original_show = plt.show
|
68 |
+
|
69 |
+
def custom_show():
|
70 |
+
"""Custom show function that saves plots instead of displaying them"""
|
71 |
+
for i, fig in enumerate(plt.get_fignums()):
|
72 |
+
figure = plt.figure(fig)
|
73 |
+
# Save plot to bytes buffer
|
74 |
+
buf = io.BytesIO()
|
75 |
+
figure.savefig(buf, format='png', bbox_inches='tight')
|
76 |
+
buf.seek(0)
|
77 |
+
plots.append(buf.read())
|
78 |
+
plt.close('all')
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Create execution context with common libraries and the DataFrame
|
82 |
+
exec_globals = {
|
83 |
+
'pd': pd,
|
84 |
+
'plt': plt,
|
85 |
+
'json': json,
|
86 |
+
'df': self.df, # Include the DataFrame in the execution context
|
87 |
+
'__builtins__': __builtins__,
|
88 |
+
}
|
89 |
+
|
90 |
+
# Replace plt.show with custom implementation
|
91 |
+
plt.show = custom_show
|
92 |
+
|
93 |
+
# Execute code and capture output
|
94 |
+
with contextlib.redirect_stdout(stdout):
|
95 |
+
exec(code, exec_globals)
|
96 |
+
|
97 |
+
output = stdout.getvalue()
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
error = {
|
101 |
+
"message": str(e),
|
102 |
+
"traceback": traceback.format_exc()
|
103 |
+
}
|
104 |
+
finally:
|
105 |
+
# Restore original plt.show
|
106 |
+
plt.show = original_show
|
107 |
+
|
108 |
+
return {
|
109 |
+
'output': output,
|
110 |
+
'error': error,
|
111 |
+
'plots': plots
|
112 |
+
}
|
113 |
+
|
114 |
+
def save_plot_dummy(self, plot_data: bytes, description: str) -> str:
|
115 |
+
"""
|
116 |
+
Save plot to charts folder and return a dummy URL
|
117 |
+
|
118 |
+
Args:
|
119 |
+
plot_data (bytes): Image data in bytes
|
120 |
+
description (str): Description of the plot
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
str: Dummy URL for the chart
|
124 |
+
"""
|
125 |
+
# Generate unique filename
|
126 |
+
filename = f"chart_{uuid.uuid4().hex}.png"
|
127 |
+
filepath = self.charts_folder / filename
|
128 |
+
|
129 |
+
# Save the plot (even though we're using dummy URLs, we still save it)
|
130 |
+
with open(filepath, 'wb') as f:
|
131 |
+
f.write(plot_data)
|
132 |
+
|
133 |
+
# Return a dummy URL
|
134 |
+
return f"https://example.com/charts/{filename}"
|
135 |
+
|
136 |
+
def process_response(self, response: CsvChatResult) -> str:
|
137 |
+
"""
|
138 |
+
Process the CsvChatResult response and generate formatted output
|
139 |
+
|
140 |
+
Args:
|
141 |
+
response (CsvChatResult): Response from CSV analysis
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
str: Formatted output with results and dummy image URLs
|
145 |
+
"""
|
146 |
+
output_parts = []
|
147 |
+
|
148 |
+
# Add casual response
|
149 |
+
output_parts.append(response.casual_response)
|
150 |
+
|
151 |
+
# Process analysis operations
|
152 |
+
for operation in response.analysis_operations:
|
153 |
+
# Execute the code
|
154 |
+
result = self.execute_code(operation.code.code)
|
155 |
+
|
156 |
+
# Add operation description
|
157 |
+
output_parts.append(f"\n{operation.description}:")
|
158 |
+
|
159 |
+
# Add output or error
|
160 |
+
if result['error']:
|
161 |
+
output_parts.append(f"Error: {result['error']['message']}")
|
162 |
+
else:
|
163 |
+
output_parts.append(result['output'].strip())
|
164 |
+
|
165 |
+
# Process charts if they exist
|
166 |
+
if response.charts:
|
167 |
+
output_parts.append("\nVisualizations:")
|
168 |
+
|
169 |
+
for chart in response.charts:
|
170 |
+
if chart.code:
|
171 |
+
# Execute the chart code
|
172 |
+
result = self.execute_code(chart.code)
|
173 |
+
|
174 |
+
if result['plots']:
|
175 |
+
# Save each generated plot and get dummy URL
|
176 |
+
for plot_data in result['plots']:
|
177 |
+
dummy_url = self.save_plot_dummy(plot_data, chart.image_description)
|
178 |
+
output_parts.append(f"\n{chart.image_description}")
|
179 |
+
output_parts.append(f"")
|
180 |
+
elif result['error']:
|
181 |
+
output_parts.append(f"\nError generating {chart.image_description}: {result['error']['message']}")
|
182 |
+
|
183 |
+
return "\n".join(output_parts)
|
together_ai_instance_provider.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# instance_provider.py
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from typing import Dict, Optional
|
5 |
+
from pydantic_ai.models.openai import OpenAIModel
|
6 |
+
from pydantic_ai.providers.openai import OpenAIProvider
|
7 |
+
|
8 |
+
class InstanceProvider:
|
9 |
+
"""Manages multiple Together AI API instances with failover support"""
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
self.instances: Dict[str, dict] = {}
|
13 |
+
self.locked_keys: Dict[str, float] = {} # key: lock_time
|
14 |
+
self.LOCK_DURATION = 1800 # 30 minutes in seconds
|
15 |
+
self._initialize_instances()
|
16 |
+
|
17 |
+
def _initialize_instances(self):
|
18 |
+
"""Load all API keys from environment and create instances"""
|
19 |
+
api_keys = os.getenv("TOGETHER_AI_API_KEYS", "").split(",")
|
20 |
+
base_url = os.getenv("TOGETHER_AI_BASE_URL")
|
21 |
+
model_name = os.getenv("TOGETHER_AI_LLM_MODEL_NAME")
|
22 |
+
|
23 |
+
for key in api_keys:
|
24 |
+
key = key.strip()
|
25 |
+
if key:
|
26 |
+
self.instances[key] = {
|
27 |
+
'model': OpenAIModel(
|
28 |
+
model_name,
|
29 |
+
provider=OpenAIProvider(
|
30 |
+
base_url=base_url,
|
31 |
+
api_key=key
|
32 |
+
)
|
33 |
+
),
|
34 |
+
'error_count': 0
|
35 |
+
}
|
36 |
+
|
37 |
+
def _clean_locked_keys(self):
|
38 |
+
"""Remove keys that have been locked beyond the duration"""
|
39 |
+
current_time = time.time()
|
40 |
+
expired_keys = [
|
41 |
+
key for key, lock_time in self.locked_keys.items()
|
42 |
+
if current_time - lock_time > self.LOCK_DURATION
|
43 |
+
]
|
44 |
+
for key in expired_keys:
|
45 |
+
del self.locked_keys[key]
|
46 |
+
|
47 |
+
def get_instance(self) -> Optional[OpenAIModel]:
|
48 |
+
"""Get an available instance, rotating through keys"""
|
49 |
+
self._clean_locked_keys()
|
50 |
+
|
51 |
+
for key, instance_data in self.instances.items():
|
52 |
+
if key not in self.locked_keys:
|
53 |
+
return instance_data['model']
|
54 |
+
|
55 |
+
# If we get here, all keys are locked
|
56 |
+
raise RuntimeError("All API keys exhausted or temporarily locked")
|
57 |
+
|
58 |
+
def report_error(self, api_key: str):
|
59 |
+
"""Report an error for a specific API key and lock it"""
|
60 |
+
if api_key in self.instances:
|
61 |
+
self.instances[api_key]['error_count'] += 1
|
62 |
+
self.locked_keys[api_key] = time.time()
|
63 |
+
|
64 |
+
def get_api_key_for_model(self, model: OpenAIModel) -> Optional[str]:
|
65 |
+
"""Get the API key for a given model instance"""
|
66 |
+
for key, instance_data in self.instances.items():
|
67 |
+
if instance_data['model'] == model:
|
68 |
+
return key
|
69 |
+
return None
|
together_ai_llama_agent.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import json
|
3 |
+
from typing import List, Literal, Optional
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from pydantic_ai import Agent
|
7 |
+
from csv_service import clean_data
|
8 |
+
from python_code_executor_service import PythonExecutor
|
9 |
+
from together_ai_instance_provider import InstanceProvider
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
instance_provider = InstanceProvider()
|
14 |
+
|
15 |
+
class CodeResponse(BaseModel):
|
16 |
+
"""Container for code-related responses"""
|
17 |
+
language: str = "python"
|
18 |
+
code: str
|
19 |
+
|
20 |
+
class ChartSpecification(BaseModel):
|
21 |
+
"""Details about requested charts"""
|
22 |
+
image_description: str
|
23 |
+
code: Optional[str] = None
|
24 |
+
|
25 |
+
class AnalysisOperation(BaseModel):
|
26 |
+
"""Container for a single analysis operation with its code and result"""
|
27 |
+
code: CodeResponse
|
28 |
+
description: str
|
29 |
+
|
30 |
+
class CsvChatResult(BaseModel):
|
31 |
+
"""Structured response for CSV-related AI interactions"""
|
32 |
+
response_type: Literal["casual", "data_analysis", "visualization", "mixed"]
|
33 |
+
|
34 |
+
# Casual chat response
|
35 |
+
casual_response: str
|
36 |
+
|
37 |
+
# Data analysis components
|
38 |
+
analysis_operations: List[AnalysisOperation]
|
39 |
+
|
40 |
+
# Visualization components
|
41 |
+
charts: Optional[List[ChartSpecification]] = None
|
42 |
+
|
43 |
+
|
44 |
+
def get_csv_info(df: pd.DataFrame) -> dict:
|
45 |
+
"""Get metadata/info about the CSV"""
|
46 |
+
info = {
|
47 |
+
'num_rows': len(df),
|
48 |
+
'num_cols': len(df.columns),
|
49 |
+
'example_rows': df.head(2).to_dict('records'),
|
50 |
+
'dtypes': {col: str(df[col].dtype) for col in df.columns},
|
51 |
+
'columns': list(df.columns),
|
52 |
+
'numeric_columns': [col for col in df.columns if pd.api.types.is_numeric_dtype(df[col])],
|
53 |
+
'categorical_columns': [col for col in df.columns if pd.api.types.is_string_dtype(df[col])]
|
54 |
+
}
|
55 |
+
return info
|
56 |
+
|
57 |
+
|
58 |
+
def get_csv_system_prompt(df: pd.DataFrame) -> str:
|
59 |
+
"""Generate system prompt for CSV analysis"""
|
60 |
+
csv_info = get_csv_info(df)
|
61 |
+
|
62 |
+
prompt = f"""
|
63 |
+
You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.
|
64 |
+
|
65 |
+
CSV Info:
|
66 |
+
- Rows: {csv_info['num_rows']}, Cols: {csv_info['num_cols']}
|
67 |
+
- Columns: {csv_info['columns']}
|
68 |
+
- Sample: {csv_info['example_rows']}
|
69 |
+
- Dtypes: {csv_info['dtypes']}
|
70 |
+
|
71 |
+
Strict Rules:
|
72 |
+
1. Never recreate 'df' - use the existing variable
|
73 |
+
2. For analysis:
|
74 |
+
- Include necessary imports (except pandas) and include complete code
|
75 |
+
- Use df directly (e.g., print(df[...].mean()))
|
76 |
+
3. For visualizations:
|
77 |
+
- Specify chart type and include complete code
|
78 |
+
- Example: plt.bar(df['x'], df['y'])
|
79 |
+
4. For Lists and Dictionaries, return them as JSON
|
80 |
+
|
81 |
+
Example:
|
82 |
+
import json
|
83 |
+
print(json.dumps(df[df['col'] == 'val'].to_dict('records'), indent=2))
|
84 |
+
"""
|
85 |
+
return prompt
|
86 |
+
|
87 |
+
|
88 |
+
def create_csv_agent(df: pd.DataFrame, max_retries: int = 1) -> Agent:
|
89 |
+
"""Create and return a CSV analysis agent with API key rotation"""
|
90 |
+
csv_system_prompt = get_csv_system_prompt(df)
|
91 |
+
|
92 |
+
for attempt in range(max_retries):
|
93 |
+
try:
|
94 |
+
model = instance_provider.get_instance()
|
95 |
+
if model is None:
|
96 |
+
raise RuntimeError("No available API instances")
|
97 |
+
|
98 |
+
csv_agent = Agent(
|
99 |
+
model=model,
|
100 |
+
output_type=CsvChatResult,
|
101 |
+
system_prompt=csv_system_prompt,
|
102 |
+
)
|
103 |
+
|
104 |
+
return csv_agent
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
api_key = instance_provider.get_api_key_for_model(model)
|
108 |
+
if api_key:
|
109 |
+
print(f"Error with API key (attempt {attempt + 1}): {str(e)}")
|
110 |
+
instance_provider.report_error(api_key)
|
111 |
+
continue
|
112 |
+
|
113 |
+
raise RuntimeError(f"Failed to create agent after {max_retries} attempts")
|
114 |
+
|
115 |
+
|
116 |
+
async def query_csv_agent(csv_url: str, question: str) -> str:
|
117 |
+
"""Query the CSV agent with a DataFrame and question and return formatted output"""
|
118 |
+
|
119 |
+
# Get the DataFrame from the CSV URL
|
120 |
+
df = clean_data(csv_url)
|
121 |
+
|
122 |
+
# Create agent and get response
|
123 |
+
agent = create_csv_agent(df)
|
124 |
+
result = await agent.run(question)
|
125 |
+
|
126 |
+
# Process the response through PythonExecutor
|
127 |
+
executor = PythonExecutor(df)
|
128 |
+
|
129 |
+
# Convert the raw output to CsvChatResult if needed
|
130 |
+
if not isinstance(result.output, CsvChatResult):
|
131 |
+
# Handle case where output needs conversion
|
132 |
+
try:
|
133 |
+
response_data = result.output if isinstance(result.output, dict) else json.loads(result.output)
|
134 |
+
chat_result = CsvChatResult(**response_data)
|
135 |
+
except Exception as e:
|
136 |
+
raise ValueError(f"Could not parse agent response: {str(e)}")
|
137 |
+
else:
|
138 |
+
chat_result = result.output
|
139 |
+
|
140 |
+
# Process and format the response
|
141 |
+
formatted_output = executor.process_response(chat_result)
|
142 |
+
|
143 |
+
return formatted_output
|