import json import numpy as np import pandas as pd import re import os import uuid import logging import time import threading from io import StringIO import sys import traceback from typing import Optional, Dict, Any, List, Set from pydantic import BaseModel, Field from dotenv import load_dotenv import seaborn as sns import datetime as dt from langchain_openai import ChatOpenAI # Configure pandas display options pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.max_colwidth', None) # Load environment variables load_dotenv() # Configuration constants API_KEYS = os.getenv("OPENAI_API_KEYS", "").split(",") MODEL_NAME = 'gpt-4o' KEY_RETRY_DELAY = 40 # seconds # Configure non-interactive matplotlib backend os.environ['MPLBACKEND'] = 'agg' import matplotlib.pyplot as plt plt.show = lambda: None # Disable display # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', ) logger = logging.getLogger(__name__) def handle_out_of_range_float(value): """Handle NaN and Inf values in numeric data""" if isinstance(value, float): if np.isnan(value): return None elif np.isinf(value): return "Infinity" return value class OpenAIKeyManager: """Manage multiple OpenAI API keys with validation, failover, and delayed retries""" def __init__(self, api_keys: List[str]): self.original_keys = api_keys.copy() self.available_keys = api_keys.copy() self.active_key = None self.failed_keys: Dict[str, float] = {} # key: timestamp when failed self.llm_instance = None self.lock = threading.Lock() def configure(self) -> bool: """Validate and activate an OpenAI API key with retry logic""" with self.lock: # First try available keys while self.available_keys: key = self.available_keys.pop(0) if self._try_key(key): return True # Then check if any failed keys are ready for retry now = time.time() retry_keys = [ k for k, ts in self.failed_keys.items() if (now - ts) >= KEY_RETRY_DELAY ] for key in retry_keys: if self._try_key(key): del self.failed_keys[key] return True logger.critical("All API keys failed (including retries)") return False def _try_key(self, key: str) -> bool: """Attempt to use a specific key, return True if successful""" try: self.llm_instance = ChatOpenAI( model=MODEL_NAME, api_key=key, temperature=0, max_retries=0 ) self.llm_instance.invoke("test") # Simple test call self.active_key = key logger.info(f"Active_Key: {self._mask_key(key)}") return True except Exception as e: self.failed_keys[key] = time.time() logger.error(f"Key failed: {self._mask_key(key)} - {str(e)}") return False def rotate_key(self) -> bool: """Rotate to the next available API key (including retries)""" return self.configure() def get_llm_instance(self) -> ChatOpenAI: """Get the configured LLM instance""" return self.llm_instance def _mask_key(self, key: str) -> str: """Mask API key for secure logging""" return f"{key[:8]}...{key[-4:]}" if key else "" class PythonREPL: """Secure Python REPL environment for code execution""" def __init__(self, df: pd.DataFrame): self.df = df self.local_env = { "pd": pd, "df": self.df.copy(), "plt": plt, "os": os, "uuid": uuid, "sns": sns, "json": json, "dt": dt, "np": np, } os.makedirs('generated_charts', exist_ok=True) def execute(self, code: str) -> Dict[str, Any]: """Execute Python code in a secure environment""" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() error_msg = None try: # Ensure proper matplotlib configuration code = f""" import matplotlib.pyplot as plt plt.switch_backend('agg') {code} plt.close('all') """ exec(code, self.local_env) self.df = self.local_env.get('df', self.df) error = False except Exception as e: error_msg = traceback.format_exc() error = True finally: sys.stdout = old_stdout return { "output": mystdout.getvalue(), "error": error, "error_message": error_msg if error else None, "df": self.local_env.get('df', self.df) } class RethinkAgent(BaseModel): """AI agent for data analysis with automatic error correction""" df: pd.DataFrame max_retries: int = Field(default=5, ge=1) current_retry: int = Field(default=0, ge=0) repl: Optional[PythonREPL] = None key_manager: Optional[OpenAIKeyManager] = None llm: Optional[ChatOpenAI] = None class Config: arbitrary_types_allowed = True def _extract_code(self, response: str) -> str: """Extract Python code from markdown response""" code_match = re.search(r'```python(.*?)```', response, re.DOTALL) if code_match: return code_match.group(1).strip() code_match = re.search(r'```(.*?)```', response, re.DOTALL) return code_match.group(1).strip() if code_match else response.strip() def _generate_initial_prompt(self, query: str, chart: bool = False) -> str: """Generate the initial prompt for the LLM""" columns = "\n".join([f"{col} ({self.df[col].dtype})" for col in self.df.columns]) if chart: return f""" Generate Python code to create visualization(s) for this DataFrame with columns: {columns} First 5 rows: {self.df.head().to_string()} Query: {query} Requirements: 1. Save visualizations to 'generated_charts/' with UUID filename (use uuid.uuid4()) 2. Use plt.savefig() with format='png' 3. No plt.show() calls allowed 4. After saving each chart, logger.info exactly: CHART_SAVED: generated_charts/.png 5. Start with 'import pandas as pd', 'import matplotlib.pyplot as plt', etc. 6. The DataFrame is available as 'df' 7. Wrap code in ```python``` blocks 8. If Question is illogical and cannot be answered, explain using logger.info() """ else: return f""" Generate Python code to analyze this DataFrame with columns: {columns} First 5 rows: {self.df.head().to_string()} Query: {query} Requirements: 1. Use logger.info() to show results with clear explanations 2. If Question is illogical and cannot be answered, explain using logger.info() 3. Start with necessary imports ('import pandas as pd', etc.) 4. The DataFrame is available as 'df' 5. For tabular results, use markdown formatting 6. Wrap code in ```python``` blocks """ def _generate_retry_prompt(self, query: str, error: str, code: str, chart: bool = False) -> str: """Generate a retry prompt when code execution fails""" if chart: return f""" The previous code failed with this error: {error} Here was the code that failed: {code} Please fix the code to: 1. Create the requested visualization(s) 2. Save to 'generated_charts/' with UUID filename 3. logger.info CHART_SAVED messages 4. Handle the error: {error} Original query: {query} Show the corrected code in ```python``` blocks """ else: return f""" The previous code failed with this error: {error} Here was the code that failed: {code} Please fix the code to: 1. Complete the analysis requested 2. Handle the error: {error} 3. Include clear output formatting Original query: {query} Show the corrected code in ```python``` blocks """ def initialize_model(self, api_keys: List[str]) -> bool: """Initialize OpenAI client with key rotation""" self.key_manager = OpenAIKeyManager(api_keys) if not self.key_manager.configure(): raise RuntimeError("All API keys failed") self.llm = self.key_manager.get_llm_instance() return True def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None, chart: bool = False) -> str: """Generate Python code to answer the query""" prompt = self._generate_retry_prompt(query, error, previous_code, chart) if error else self._generate_initial_prompt(query, chart) try: response = self.llm.invoke(prompt) return self._extract_code(response.content) except Exception as e: logger.error(f"API error: {str(e)}") if self.key_manager.rotate_key(): self.llm = self.key_manager.get_llm_instance() return self.generate_code(query, error, previous_code, chart) raise def execute_query(self, query: str, chart: bool = False) -> str: """Execute the query with automatic error correction""" self.repl = PythonREPL(self.df) error = None previous_code = None while self.current_retry < self.max_retries: try: code = self.generate_code(query, error, previous_code, chart) result = self.repl.execute(code) if result["error"]: self.current_retry += 1 error = result["error_message"] previous_code = code logger.warning(f"Retry {self.current_retry}/{self.max_retries}") else: self.df = result["df"] return result["output"] except Exception as e: logger.error(f"Critical error: {str(e)}") return f"System error: {str(e)}" return f"Failed after {self.max_retries} retries. Last error: {error}" def openai_react_chat(csv_url: str, query: str, chart: bool = False) -> Optional[Dict]: """Main function to execute data analysis queries""" try: # Read and validate input data df = pd.read_csv(csv_url) if df.empty: raise ValueError("Empty DataFrame loaded from CSV") agent = RethinkAgent(df=df) if not agent.initialize_model(API_KEYS): logger.error("Failed to initialize model") return None result = agent.execute_query(query, chart) # Process different response types if isinstance(result, pd.DataFrame): processed = result.apply(handle_out_of_range_float).to_dict(orient="records") elif isinstance(result, pd.Series): processed = result.apply(handle_out_of_range_float).to_dict() elif isinstance(result, list): processed = [handle_out_of_range_float(item) for item in result] elif isinstance(result, dict): processed = {k: handle_out_of_range_float(v) for k, v in result.items()} else: processed = {"answer": str(handle_out_of_range_float(result))} logger.info("Analysis completed successfully") if chart and isinstance(result, str) and result.startswith("CHART_SAVED:"): result = result.strip() # Remove any leading/trailing spaces or newlines match = re.search(r'CHART_SAVED:\s*(\S+)', result) if match: chart_path = match.group(1) logger.info("Chart Path:", chart_path) return chart_path else: logger.info("Could not extract chart path from response") return None return processed except Exception as e: logger.error(f"Error in openai_llm_chat: {str(e)}") return None