Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,44 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
if tokenizer is not None:
|
43 |
-
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
44 |
-
else:
|
45 |
-
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
46 |
-
|
47 |
-
return generated_caption
|
48 |
-
|
49 |
-
|
50 |
-
def generate_caption_coca(model, transform, image):
|
51 |
-
im = transform(image).unsqueeze(0).to(device)
|
52 |
-
with torch.no_grad(), torch.cuda.amp.autocast():
|
53 |
-
generated = model.generate(im, seq_len=20)
|
54 |
-
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
|
55 |
-
|
56 |
-
|
57 |
-
def generate_captions(image):
|
58 |
-
|
59 |
-
caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
|
60 |
-
|
61 |
-
caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
|
62 |
-
|
63 |
-
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
64 |
-
|
65 |
-
caption_coca = generate_caption_coca(coca_model, coca_transform, image)
|
66 |
-
|
67 |
-
caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
|
68 |
-
|
69 |
-
return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
examples = [["Image1.jpg"], ["Image2.jpg"], ["Image3.jpg"]]
|
74 |
-
outputs = [gr.outputs.Textbox(label="Caption generated - 1"), gr.outputs.Textbox(label="Caption generated - 2"), gr.outputs.Textbox(label="Caption generated -3"), gr.outputs.Textbox(label="Caption generated - 4"), gr.outputs.Textbox(label="Caption generated - 5")]
|
75 |
-
|
76 |
-
|
77 |
-
title = "Interactive demo: comparing image captioning models"
|
78 |
-
description = "Image Caption Generator by Sravanth Kurmala"
|
79 |
-
article = "Assignment for Listed Inc"
|
80 |
-
|
81 |
-
interface = gr.Interface(fn=generate_captions,
|
82 |
-
inputs=gr.inputs.Image(type="pil"),
|
83 |
-
outputs=outputs,
|
84 |
-
examples=examples,
|
85 |
-
title=title,
|
86 |
-
description=description,
|
87 |
-
article=article,
|
88 |
-
enable_queue=True)
|
89 |
interface.launch(debug=True)
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
5 |
+
|
6 |
+
device='cpu'
|
7 |
+
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
8 |
+
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
9 |
+
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
10 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
12 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
13 |
+
|
14 |
+
|
15 |
+
def predict(image,max_length=64, num_beams=4):
|
16 |
+
image = image.convert('RGB')
|
17 |
+
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
18 |
+
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
19 |
+
caption_ids = model.generate(image, max_length = max_length)[0]
|
20 |
+
caption_text = clean_text(tokenizer.decode(caption_ids))
|
21 |
+
return caption_text
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
|
26 |
+
output = gr.outputs.Textbox(type="auto",label="Captions")
|
27 |
+
examples = [f"example{i}.jpg" for i in range(1,5)]
|
28 |
+
|
29 |
+
description= "Image caption Generator"
|
30 |
+
title = "Image Captioning 🖼️"
|
31 |
+
|
32 |
+
article = "Created By : Sravanth Kurmala"
|
33 |
+
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=predict,
|
36 |
+
inputs = input,
|
37 |
+
theme="grass",
|
38 |
+
outputs=output,
|
39 |
+
examples = examples,
|
40 |
+
title=title,
|
41 |
+
description=description,
|
42 |
+
article = article,
|
43 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
interface.launch(debug=True)
|