import torch import re import gradio as gr from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel from transformers import AutoProcessor, AutoTokenizer, BlipForConditionalGeneration from huggingface_hub import hf_hub_download device='cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) def predict(image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(image, max_length = max_length)[0] caption_text = clean_text(tokenizer.decode(caption_ids)) #caption_text2 = generate_captions(image) return caption_text blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") blip_model_large.to(device) def generate_caption(processor, model, image, tokenizer=None, use_float_16=False): inputs = processor(images=image, return_tensors="pt").to(device) if use_float_16: inputs = inputs.to(torch.float16) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_captions(image): caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image) return caption_blip_large input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) #Two output boxes output_1 = gr.outputs.Textbox(type="text",label="Caption - 1") examples = [f"example{i}.png" for i in range(1,4)] description= "Image caption Generator" title = "Deep Learning and AI Intern Assignment for Listed Inc" article = "Created By : Sravanth Kurmala" interface = gr.Interface( fn=predict, inputs = input, theme="grass", outputs = output_1, examples = examples, title=title, description=description, article = article, ) interface.launch(debug=True)