File size: 23,451 Bytes
f498ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import os
import numpy as np
import torch

from . import util
from . import texture

######################################################################################
# Base mesh class
######################################################################################
class Mesh:
    def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, 
    v_weights=None, bone_mtx=None, material=None, base=None):
        self.v_pos = v_pos
        self.v_weights = v_weights
        self.v_nrm = v_nrm
        self.v_tex = v_tex
        self.v_tng = v_tng
        self.t_pos_idx = t_pos_idx
        self.t_nrm_idx = t_nrm_idx
        self.t_tex_idx = t_tex_idx
        self.t_tng_idx = t_tng_idx
        self.material = material
        self.bone_mtx = bone_mtx

        if base is not None:
            self.copy_none(base)

    def copy_none(self, other):
        if self.v_pos is None:
            self.v_pos = other.v_pos
        if self.v_weights is None:
            self.v_weights = other.v_weights
        if self.t_pos_idx is None:
            self.t_pos_idx = other.t_pos_idx
        if self.v_nrm is None:
            self.v_nrm = other.v_nrm
        if self.t_nrm_idx is None:
            self.t_nrm_idx = other.t_nrm_idx
        if self.v_tex is None:
            self.v_tex = other.v_tex
        if self.t_tex_idx is None:
            self.t_tex_idx = other.t_tex_idx
        if self.v_tng is None:
            self.v_tng = other.v_tng
        if self.t_tng_idx is None:
            self.t_tng_idx = other.t_tng_idx
        if self.material is None:
            self.material = other.material
        if self.bone_mtx is None:
            self.bone_mtx = other.bone_mtx

    def get_frames(self):
        return self.bone_mtx.shape[0] if self.bone_mtx is not None else 1

    def clone(self):
        out = Mesh(base=self)
        if out.v_pos is not None:
            out.v_pos = out.v_pos.clone()
        if out.v_weights is not None:
            out.v_weights = out.v_weights.clone()
        if out.t_pos_idx is not None:
            out.t_pos_idx = out.t_pos_idx.clone()
        if out.v_nrm is not None:
            out.v_nrm = out.v_nrm.clone()
        if out.t_nrm_idx is not None:
            out.t_nrm_idx = out.t_nrm_idx.clone()
        if out.v_tex is not None:
            out.v_tex = out.v_tex.clone()
        if out.t_tex_idx is not None:
            out.t_tex_idx = out.t_tex_idx.clone()
        if out.v_tng is not None:
            out.v_tng = out.v_tng.clone()
        if out.t_tng_idx is not None:
            out.t_tng_idx = out.t_tng_idx.clone()
        if out.bone_mtx is not None:
            out.bone_mtx = out.bone_mtx.clone()
        return out

    def eval(self, params={}):
        return self

######################################################################################
# Compute AABB
######################################################################################
def aabb(mesh):
    return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values

######################################################################################
# Align base mesh to reference mesh:move & rescale to match bounding boxes.
######################################################################################
def unit_size(mesh):
    with torch.no_grad():
        vmin, vmax = aabb(mesh)
        scale = 2 / torch.max(vmax - vmin).item()
        v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin
        v_pos = v_pos * scale                  # Rescale to unit size

        return Mesh(v_pos, base=mesh)

def resize_mesh(mesh):
    scale = 0.03234645293868976
    vmax = torch.tensor([ 32.9707, 159.2754,  16.8091], device='cuda:0')
    vmin = torch.tensor([-28.7435,  97.4448, -18.4702], device='cuda:0')
    with torch.no_grad():
        v_pos = (mesh.v_pos/scale) + (vmax + vmin) / 2
    return Mesh(v_pos, base=mesh)


######################################################################################
# Center & scale mesh for rendering
#
# TODO: It should be better to compute camera position from animated reference mesh 
# instead of centering and scaling all meshes
######################################################################################
def center_by_reference(base_mesh, ref_aabb, scale):
    center = (ref_aabb[0] + ref_aabb[1]) * 0.5
    scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item()
    v_pos = (base_mesh.v_pos - center[None, ...]) * scale
    return Mesh(v_pos, base=base_mesh)

######################################################################################
# Rescale base-mesh from NDC [-1, 1] space to same dimensions as reference mesh
######################################################################################
def align_with_reference(base_mesh, ref_mesh): # TODO: Fix normals?
    class mesh_op_align:
        def __init__(self, base_mesh, ref_mesh):
            self.base_mesh = base_mesh
            with torch.no_grad():
                b_vmin, b_vmax = aabb(base_mesh.eval())
                r_vmin, r_vmax = aabb(ref_mesh.eval())
                b_size = (b_vmax - b_vmin)
                self.offset = (r_vmax + r_vmin) / 2
                self.scale = (r_vmax - r_vmin) / torch.where(b_size > 1e-6, b_size, torch.ones_like(b_size))

        def eval(self, params={}):
            base_mesh = self.base_mesh.eval(params)
            v_pos = base_mesh.v_pos * self.scale[None, ...] + self.offset[None, ...]
            return Mesh(v_pos, base=base_mesh)

    return mesh_op_align(base_mesh, ref_mesh)

######################################################################################
# Skinning
######################################################################################

# Helper function to skin homogeneous vectors
def _skin_hvec(bone_mtx, weights, attr):
    attr_out = torch.matmul(attr[None, ...], bone_mtx) * torch.transpose(weights, 0, 1)[..., None]
    return attr_out.sum(dim=0)[:, :3]

def skinning(mesh):
    class mesh_op_skinning:
        def __init__(self, input):
            self.input = input
            
            mesh = self.input.eval()
            t_pos_idx = mesh.t_pos_idx.detach().cpu().numpy() 
            if mesh.t_nrm_idx is not None:
                self.nrm_remap = self._compute_remap(t_pos_idx, mesh.v_nrm.shape[0], mesh.t_nrm_idx.detach().cpu().numpy())
            if mesh.t_tng_idx is not None:
                self.tng_remap = self._compute_remap(t_pos_idx, mesh.v_tng.shape[0], mesh.t_tng_idx.detach().cpu().numpy())

        # Compute an index list with corresponding vertex index for each normal/tangent. Vertices may have multiple normals/tangents, but not the other way around
        def _compute_remap(self, t_pos_idx, n_attrs, t_attr_idx):
            assert len(t_pos_idx) == len(t_attr_idx)

            attr_vtx_idx = [None] * n_attrs
            for ti in range(0, len(t_pos_idx)):
                for vi in range(0, 3):
                    assert attr_vtx_idx[t_attr_idx[ti][vi]] is None or attr_vtx_idx[t_attr_idx[ti][vi]] == t_pos_idx[ti][vi], "Trying to skin a mesh with shared normals (normal with 2 sets of skinning weights)"
                    attr_vtx_idx[t_attr_idx[ti][vi]] = t_pos_idx[ti][vi]

            return torch.tensor(attr_vtx_idx, dtype=torch.int64, device='cuda')

        def eval(self, params={}):
            imesh = self.input.eval(params)

            if imesh.v_weights is None or imesh.bone_mtx is None:
                return imesh

            # Compute frame (assume looping animation). Note, bone_mtx is stored [Frame, Bone, ...]
            t_idx = params['time'] if 'time' in params else 0
            t_idx = (t_idx % imesh.bone_mtx.shape[0]) # Loop animation
            bone_mtx    = imesh.bone_mtx[t_idx, ...]
            bone_mtx_it = torch.transpose(torch.inverse(bone_mtx), -2, -1)

            weights = imesh.v_weights
            assert weights.shape[1] == bone_mtx.shape[0]

            # Normalize weights
            weights = torch.abs(weights) # TODO: This stabilizes training, but I don't know why. All weights are already clamped to >0
            weights = weights / torch.sum(weights, dim=1, keepdim=True)

            # Skin position
            v_pos_out = _skin_hvec(bone_mtx, weights, util.to_hvec(imesh.v_pos, 1))
            
            # Skin normal
            v_nrm_out = None
            if imesh.v_nrm is not None:
                v_nrm_out = _skin_hvec(bone_mtx_it, weights[self.nrm_remap, ...], util.to_hvec(imesh.v_nrm, 0))
                v_nrm_out = util.safe_normalize(v_nrm_out)
            
            # Skin tangent
            v_tng_out = None
            if imesh.v_tng is not None:
                v_tng_out = _skin_hvec(bone_mtx, weights[self.tng_remap, ...], util.to_hvec(imesh.v_tng, 0))
                v_tng_out = util.safe_normalize(v_tng_out)

            if torch.is_anomaly_enabled():
                assert torch.all(torch.isfinite(v_pos_out))
                assert v_nrm_out is None or torch.all(torch.isfinite(v_nrm_out))
                assert v_tng_out is None or torch.all(torch.isfinite(v_tng_out))

            return Mesh(v_pos=v_pos_out[:, :3], v_nrm=v_nrm_out, v_tng=v_tng_out, base=imesh)

    return mesh_op_skinning(mesh)

# Skinning helper functions
def guess_weights(base_mesh, ref_mesh, N=10):
    base_v_pos = base_mesh.v_pos.detach().cpu().numpy()
    ref_v_pos = ref_mesh.v_pos.detach().cpu().numpy()
    ref_v_weights = ref_mesh.v_weights.detach().cpu().numpy()
    base_v_weights = np.zeros((base_v_pos.shape[0], ref_v_weights.shape[1]), dtype=np.float32)
    
    for v_idx, vtx in enumerate(base_v_pos):
        # Compute distance from current vertex to vertices in ref_mesh
        diff = ref_v_pos - vtx[None, ...]
        dist = np.sum(diff * diff, axis=-1)
        idxs = np.argpartition(dist, N)        

        # Get the N nearest vertices
        sum_w = 0.0
        sum_vtx_w = np.zeros_like(ref_v_weights[0,...])
        for i in idxs[:N]:
            sum_w += 1.0 / max(dist[i], 0.001)
            sum_vtx_w += ref_v_weights[i, ...] / max(dist[i], 0.001)
        base_v_weights[v_idx, ...] = sum_vtx_w / sum_w
    
    return base_v_weights

def random_weights(base_mesh, ref_mesh):
    init = np.random.uniform(size=(base_mesh.v_pos.shape[0], ref_mesh.v_weights.shape[1]), low=0.0, high=1.0)
    return init / np.sum(init, axis=1, keepdims=True)


######################################################################################
# Simple smooth vertex normal computation
######################################################################################
def auto_normals(mesh):
    class mesh_op_auto_normals:
        def __init__(self, input):
            self.input = input

        def eval(self, params={}):
            imesh = self.input.eval(params)

            i0 = imesh.t_pos_idx[:, 0]
            i1 = imesh.t_pos_idx[:, 1]
            i2 = imesh.t_pos_idx[:, 2]

            v0 = imesh.v_pos[i0, :]
            v1 = imesh.v_pos[i1, :]
            v2 = imesh.v_pos[i2, :]

            face_normals = torch.cross(v1 - v0, v2 - v0)

            # Splat face normals to vertices
            v_nrm = torch.zeros_like(imesh.v_pos)
            v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
            v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
            v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)

            # Normalize, replace zero (degenerated) normals with some default value
            v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))

            self.v_nrm = util.safe_normalize(v_nrm)

            if torch.is_anomaly_enabled():
                assert torch.all(torch.isfinite(self.v_nrm))

            return Mesh(v_nrm = self.v_nrm, t_nrm_idx=imesh.t_pos_idx, base = imesh)

    return mesh_op_auto_normals(mesh)

######################################################################################
# Compute tangent space from texture map coordinates
# Follows http://www.mikktspace.com/ conventions
######################################################################################
def compute_tangents(mesh):
    class mesh_op_compute_tangents:
        def __init__(self, input):
            self.input = input

        def eval(self, params={}):
            imesh = self.input.eval(params)

            vn_idx = [None] * 3
            pos = [None] * 3
            tex = [None] * 3
            for i in range(0,3):
                pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]]
                tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]]
                vn_idx[i] = imesh.t_nrm_idx[:, i]

            tangents = torch.zeros_like(imesh.v_nrm)
            tansum   = torch.zeros_like(imesh.v_nrm)

            # Compute tangent space for each triangle
            uve1 = tex[1] - tex[0]
            uve2 = tex[2] - tex[0]
            pe1  = pos[1] - pos[0]
            pe2  = pos[2] - pos[0]
            
            nom   = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2])
            denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1])
            
            # Avoid division by zero for degenerated texture coordinates
            tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6))

            # Update all 3 vertices
            for i in range(0,3):
                idx = vn_idx[i][:, None].repeat(1,3)
                tangents.scatter_add_(0, idx, tang)                # tangents[n_i] = tangents[n_i] + tang
                tansum.scatter_add_(0, idx, torch.ones_like(tang)) # tansum[n_i] = tansum[n_i] + 1
            tangents = tangents / tansum

            # Normalize and make sure tangent is perpendicular to normal
            tangents = util.safe_normalize(tangents)
            tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm)

            self.v_tng = tangents

            if torch.is_anomaly_enabled():
                assert torch.all(torch.isfinite(tangents))

            return Mesh(v_tng=self.v_tng, t_tng_idx=imesh.t_nrm_idx, base=imesh)

    return mesh_op_compute_tangents(mesh)

######################################################################################
# Subdivide each triangle into 4 new ones. Edge midpoint subdivision
######################################################################################
def subdivide(mesh, steps=1):
    class mesh_op_subdivide:
        def __init__(self, input):
            self.input = input
            self.new_vtx_idx = [None] * 4
            self.new_tri_idx = [None] * 4

            imesh = self.input.eval()
            v_attr = v_attr_orig = [imesh.v_pos, imesh.v_nrm, imesh.v_tex, imesh.v_tng]
            v_idx = v_idx_orig = [imesh.t_pos_idx, imesh.t_nrm_idx, imesh.t_tex_idx, imesh.t_tng_idx]
            
            for i, attr in enumerate(v_attr):
                if attr is not None:
                    tri_idx = v_idx[i].cpu().numpy()

                    # Find unique edges
                    edge_fetch_a = []
                    edge_fetch_b = []
                    edge_verts = {}
                    for tri in tri_idx:
                        for e_idx in range(0, 3):
                            v0 = tri[e_idx]
                            v1 = tri[(e_idx + 1) % 3]
                            if (v1, v0) not in edge_verts.keys():
                                edge_verts[(v0, v1)] = [len(edge_fetch_a), v0, v1]
                                edge_fetch_a += [v0]
                                edge_fetch_b += [v1]

                    # Create vertex fetch lists for computing midpoint vertices
                    self.new_vtx_idx[i] = [torch.tensor(edge_fetch_a, dtype=torch.int64, device='cuda'), torch.tensor(edge_fetch_b, dtype=torch.int64, device='cuda')]

                    # Create subdivided triangles
                    new_tri_idx = []
                    for tri in tri_idx:
                        v0, v1, v2= tri
                        h0 = (edge_verts[(v0, v1)][0] if (v0, v1) in edge_verts.keys() else edge_verts[(v1, v0)][0]) + attr.shape[0]
                        h1 = (edge_verts[(v1, v2)][0] if (v1, v2) in edge_verts.keys() else edge_verts[(v2, v1)][0]) + attr.shape[0]
                        h2 = (edge_verts[(v2, v0)][0] if (v2, v0) in edge_verts.keys() else edge_verts[(v0, v2)][0]) + attr.shape[0]
                        new_tri_idx += [[v0, h0, h2], [h0, v1, h1], [h1, v2, h2], [h0, h1, h2]]
                    self.new_tri_idx[i] = torch.tensor(new_tri_idx, dtype=torch.int64, device='cuda')

        def eval(self, params={}):
            imesh = self.input.eval(params)

            v_attr = v_attr_orig = [imesh.v_pos, imesh.v_nrm, imesh.v_tex, imesh.v_tng]
            v_idx = v_idx_orig = [imesh.t_pos_idx, imesh.t_nrm_idx, imesh.t_tex_idx, imesh.t_tng_idx]

            for i, attr in enumerate(v_attr):
                if attr is not None:
                    # Create new edge midpoint attributes
                    edge_attr = (attr[self.new_vtx_idx[i][0], :] + attr[self.new_vtx_idx[i][1], :]) * 0.5
                    v_attr[i] = torch.cat([attr, edge_attr], dim=0)
                    
                    # Copy new triangle lists
                    v_idx[i] = self.new_tri_idx[i]

            return Mesh(v_attr[0], v_idx[0], v_attr[1], v_idx[1], v_attr[2], v_idx[2], v_attr[3], v_idx[3], base=imesh)

    x = mesh
    for i in range(steps):
        x = mesh_op_subdivide(x)

    bm = mesh.eval()
    sm = x.eval()
    v_attr_orig = [bm.v_pos, bm.v_nrm, bm.v_tex, bm.v_tng]
    v_attr = [sm.v_pos, sm.v_nrm, sm.v_tex, sm.v_tng]
    v_idx_orig = [bm.t_pos_idx, bm.t_nrm_idx, bm.t_tex_idx, bm.t_tng_idx]
    v_idx = [sm.t_pos_idx, sm.t_nrm_idx, sm.t_tex_idx, sm.t_tng_idx]
    print("Subdivided mesh:")
    print("    Attrs:   [%6d, %6d, %6d, %6d] -> [%6d, %6d, %6d, %6d]" % tuple(list((a.shape[0] if a is not None else 0) for a in v_attr_orig) + list((a.shape[0] if a is not None else 0) for a in v_attr)))
    print("    Indices: [%6d, %6d, %6d, %6d] -> [%6d, %6d, %6d, %6d]" % tuple(list((a.shape[0] if a is not None else 0) for a in v_idx_orig) + list((a.shape[0] if a is not None else 0) for a in v_idx)))

    return x

######################################################################################
# Displacement mapping
######################################################################################
def displace(mesh, displacement_map, scale=1.0, keep_connectivity=True):
    class mesh_op_displace:
        def __init__(self, input, displacement_map, scale, keep_connectivity):
            self.input = input
            self.displacement_map = displacement_map
            self.scale = scale
            self.keep_connectivity = keep_connectivity
        
        def eval(self, params={}):
            imesh = self.input.eval(params)

            if self.keep_connectivity:
                vd   = torch.zeros_like(imesh.v_pos)
                vd_n = torch.zeros_like(imesh.v_pos)
                for i in range(0, 3):
                    v = imesh.v_pos[imesh.t_pos_idx[:, i], :]
                    n = imesh.v_nrm[imesh.t_nrm_idx[:, i], :]
                    t = imesh.v_tex[imesh.t_tex_idx[:, i], :]
                    v_displ = v + n * self.scale * util.tex_2d(self.displacement_map, t)
            
                    splat_idx = imesh.t_pos_idx[:, i, None].repeat(1,3)
                    vd.scatter_add_(0, splat_idx, v_displ)
                    vd_n.scatter_add_(0, splat_idx, torch.ones_like(v_displ))

                return Mesh(vd / vd_n, base=imesh)
            else:
                vd   = torch.zeros([imesh.v_tex.shape[0], 3], dtype=torch.float32, device='cuda')
                vd_n = torch.zeros([imesh.v_tex.shape[0], 3], dtype=torch.float32, device='cuda')
                for i in range(0, 3):
                    v = imesh.v_pos[imesh.t_pos_idx[:, i], :]
                    n = imesh.v_nrm[imesh.t_nrm_idx[:, i], :]
                    t = imesh.v_tex[imesh.t_tex_idx[:, i], :]
                    v_displ = v + n * self.scale * util.tex_2d(self.displacement_map, t)
            
                    splat_idx = imesh.t_tex_idx[:, i, None].repeat(1, 3)
                    vd.scatter_add_(0, splat_idx, v_displ)
                    vd_n.scatter_add_(0, splat_idx, torch.ones_like(v_displ))

                return Mesh(vd / vd_n, mesh.t_tex_idx, base=imesh)

    return mesh_op_displace(mesh, displacement_map, scale, keep_connectivity)


######################################################################################
# Utilities to merge meshes / materials. No mesh-ops or differentiable stuff here.
######################################################################################

def merge(mesh_a, mesh_b):
    def _merge_attr_idx(a, b, a_idx, b_idx):
        if a is None and b is None:
            return None, None
        elif a is not None and b is None:
            return a, a_idx
        elif a is None and b is not None:
            return b, b_idx
        else:
            return torch.cat((a, b), dim=0), torch.cat((a_idx, b_idx + a.shape[0]), dim=0)

    v_pos, t_pos_idx = _merge_attr_idx(mesh_a.v_pos, mesh_b.v_pos, mesh_a.t_pos_idx, mesh_b.t_pos_idx)
    v_nrm, t_nrm_idx = _merge_attr_idx(mesh_a.v_nrm, mesh_b.v_nrm, mesh_a.t_nrm_idx, mesh_b.t_nrm_idx)
    v_tng, t_tng_idx = _merge_attr_idx(mesh_a.v_tng, mesh_b.v_tng, mesh_a.t_tng_idx, mesh_b.t_tng_idx)
    v_tex, t_tex_idx = _merge_attr_idx(mesh_a.v_tex, mesh_b.v_tex, mesh_a.t_tex_idx, mesh_b.t_tex_idx)

    if mesh_a.v_weights is None and mesh_b.v_weights is None:
        v_weights, bone_mtx = None, None
    elif mesh_a.v_weights is not None and mesh_b.v_weights is None:
        v_weights, bone_mtx = mesh_a.v_weights, mesh_a.bone_mtx
    elif mesh_a.v_weights is None and mesh_b.v_weights is not None:
        v_weights, bone_mtx = mesh_b.v_weights, mesh_b.bone_mtx
    else:
        if torch.all(mesh_a.bone_mtx == mesh_b.bone_mtx): # TODO: Wanted to test if same pointer
            bone_mtx = mesh_a.bone_mtx
            v_weights = torch.cat((mesh_a.v_weights, mesh_b.v_weights), dim=0)
        else:
            bone_mtx = torch.cat((mesh_a.bone_mtx, mesh_b.bone_mtx), dim=1) # Frame, Bone, ...
        
            # Weights need to be increased to account for all bones
            v_wa = torch.nn.functional.pad(mesh_a.v_weights, [0, mesh_b.v_weights.shape[1]]) #Pad weights_a with shape of weights_b
            v_wb = torch.nn.functional.pad(mesh_b.v_weights, [mesh_a.v_weights.shape[1], 0]) #Pad weights_b with shape of weights_a
            v_weights = torch.cat((v_wa, v_wb), dim=0)

    return Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx, v_nrm=v_nrm, t_nrm_idx=t_nrm_idx, v_tng=v_tng, t_tng_idx=t_tng_idx, v_tex=v_tex, t_tex_idx=t_tex_idx, v_weights=v_weights, bone_mtx=bone_mtx, base=mesh_a)