Spaces:
Paused
Paused
File size: 23,451 Bytes
f498ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import numpy as np
import torch
from . import util
from . import texture
######################################################################################
# Base mesh class
######################################################################################
class Mesh:
def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None,
v_weights=None, bone_mtx=None, material=None, base=None):
self.v_pos = v_pos
self.v_weights = v_weights
self.v_nrm = v_nrm
self.v_tex = v_tex
self.v_tng = v_tng
self.t_pos_idx = t_pos_idx
self.t_nrm_idx = t_nrm_idx
self.t_tex_idx = t_tex_idx
self.t_tng_idx = t_tng_idx
self.material = material
self.bone_mtx = bone_mtx
if base is not None:
self.copy_none(base)
def copy_none(self, other):
if self.v_pos is None:
self.v_pos = other.v_pos
if self.v_weights is None:
self.v_weights = other.v_weights
if self.t_pos_idx is None:
self.t_pos_idx = other.t_pos_idx
if self.v_nrm is None:
self.v_nrm = other.v_nrm
if self.t_nrm_idx is None:
self.t_nrm_idx = other.t_nrm_idx
if self.v_tex is None:
self.v_tex = other.v_tex
if self.t_tex_idx is None:
self.t_tex_idx = other.t_tex_idx
if self.v_tng is None:
self.v_tng = other.v_tng
if self.t_tng_idx is None:
self.t_tng_idx = other.t_tng_idx
if self.material is None:
self.material = other.material
if self.bone_mtx is None:
self.bone_mtx = other.bone_mtx
def get_frames(self):
return self.bone_mtx.shape[0] if self.bone_mtx is not None else 1
def clone(self):
out = Mesh(base=self)
if out.v_pos is not None:
out.v_pos = out.v_pos.clone()
if out.v_weights is not None:
out.v_weights = out.v_weights.clone()
if out.t_pos_idx is not None:
out.t_pos_idx = out.t_pos_idx.clone()
if out.v_nrm is not None:
out.v_nrm = out.v_nrm.clone()
if out.t_nrm_idx is not None:
out.t_nrm_idx = out.t_nrm_idx.clone()
if out.v_tex is not None:
out.v_tex = out.v_tex.clone()
if out.t_tex_idx is not None:
out.t_tex_idx = out.t_tex_idx.clone()
if out.v_tng is not None:
out.v_tng = out.v_tng.clone()
if out.t_tng_idx is not None:
out.t_tng_idx = out.t_tng_idx.clone()
if out.bone_mtx is not None:
out.bone_mtx = out.bone_mtx.clone()
return out
def eval(self, params={}):
return self
######################################################################################
# Compute AABB
######################################################################################
def aabb(mesh):
return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values
######################################################################################
# Align base mesh to reference mesh:move & rescale to match bounding boxes.
######################################################################################
def unit_size(mesh):
with torch.no_grad():
vmin, vmax = aabb(mesh)
scale = 2 / torch.max(vmax - vmin).item()
v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin
v_pos = v_pos * scale # Rescale to unit size
return Mesh(v_pos, base=mesh)
def resize_mesh(mesh):
scale = 0.03234645293868976
vmax = torch.tensor([ 32.9707, 159.2754, 16.8091], device='cuda:0')
vmin = torch.tensor([-28.7435, 97.4448, -18.4702], device='cuda:0')
with torch.no_grad():
v_pos = (mesh.v_pos/scale) + (vmax + vmin) / 2
return Mesh(v_pos, base=mesh)
######################################################################################
# Center & scale mesh for rendering
#
# TODO: It should be better to compute camera position from animated reference mesh
# instead of centering and scaling all meshes
######################################################################################
def center_by_reference(base_mesh, ref_aabb, scale):
center = (ref_aabb[0] + ref_aabb[1]) * 0.5
scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item()
v_pos = (base_mesh.v_pos - center[None, ...]) * scale
return Mesh(v_pos, base=base_mesh)
######################################################################################
# Rescale base-mesh from NDC [-1, 1] space to same dimensions as reference mesh
######################################################################################
def align_with_reference(base_mesh, ref_mesh): # TODO: Fix normals?
class mesh_op_align:
def __init__(self, base_mesh, ref_mesh):
self.base_mesh = base_mesh
with torch.no_grad():
b_vmin, b_vmax = aabb(base_mesh.eval())
r_vmin, r_vmax = aabb(ref_mesh.eval())
b_size = (b_vmax - b_vmin)
self.offset = (r_vmax + r_vmin) / 2
self.scale = (r_vmax - r_vmin) / torch.where(b_size > 1e-6, b_size, torch.ones_like(b_size))
def eval(self, params={}):
base_mesh = self.base_mesh.eval(params)
v_pos = base_mesh.v_pos * self.scale[None, ...] + self.offset[None, ...]
return Mesh(v_pos, base=base_mesh)
return mesh_op_align(base_mesh, ref_mesh)
######################################################################################
# Skinning
######################################################################################
# Helper function to skin homogeneous vectors
def _skin_hvec(bone_mtx, weights, attr):
attr_out = torch.matmul(attr[None, ...], bone_mtx) * torch.transpose(weights, 0, 1)[..., None]
return attr_out.sum(dim=0)[:, :3]
def skinning(mesh):
class mesh_op_skinning:
def __init__(self, input):
self.input = input
mesh = self.input.eval()
t_pos_idx = mesh.t_pos_idx.detach().cpu().numpy()
if mesh.t_nrm_idx is not None:
self.nrm_remap = self._compute_remap(t_pos_idx, mesh.v_nrm.shape[0], mesh.t_nrm_idx.detach().cpu().numpy())
if mesh.t_tng_idx is not None:
self.tng_remap = self._compute_remap(t_pos_idx, mesh.v_tng.shape[0], mesh.t_tng_idx.detach().cpu().numpy())
# Compute an index list with corresponding vertex index for each normal/tangent. Vertices may have multiple normals/tangents, but not the other way around
def _compute_remap(self, t_pos_idx, n_attrs, t_attr_idx):
assert len(t_pos_idx) == len(t_attr_idx)
attr_vtx_idx = [None] * n_attrs
for ti in range(0, len(t_pos_idx)):
for vi in range(0, 3):
assert attr_vtx_idx[t_attr_idx[ti][vi]] is None or attr_vtx_idx[t_attr_idx[ti][vi]] == t_pos_idx[ti][vi], "Trying to skin a mesh with shared normals (normal with 2 sets of skinning weights)"
attr_vtx_idx[t_attr_idx[ti][vi]] = t_pos_idx[ti][vi]
return torch.tensor(attr_vtx_idx, dtype=torch.int64, device='cuda')
def eval(self, params={}):
imesh = self.input.eval(params)
if imesh.v_weights is None or imesh.bone_mtx is None:
return imesh
# Compute frame (assume looping animation). Note, bone_mtx is stored [Frame, Bone, ...]
t_idx = params['time'] if 'time' in params else 0
t_idx = (t_idx % imesh.bone_mtx.shape[0]) # Loop animation
bone_mtx = imesh.bone_mtx[t_idx, ...]
bone_mtx_it = torch.transpose(torch.inverse(bone_mtx), -2, -1)
weights = imesh.v_weights
assert weights.shape[1] == bone_mtx.shape[0]
# Normalize weights
weights = torch.abs(weights) # TODO: This stabilizes training, but I don't know why. All weights are already clamped to >0
weights = weights / torch.sum(weights, dim=1, keepdim=True)
# Skin position
v_pos_out = _skin_hvec(bone_mtx, weights, util.to_hvec(imesh.v_pos, 1))
# Skin normal
v_nrm_out = None
if imesh.v_nrm is not None:
v_nrm_out = _skin_hvec(bone_mtx_it, weights[self.nrm_remap, ...], util.to_hvec(imesh.v_nrm, 0))
v_nrm_out = util.safe_normalize(v_nrm_out)
# Skin tangent
v_tng_out = None
if imesh.v_tng is not None:
v_tng_out = _skin_hvec(bone_mtx, weights[self.tng_remap, ...], util.to_hvec(imesh.v_tng, 0))
v_tng_out = util.safe_normalize(v_tng_out)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_pos_out))
assert v_nrm_out is None or torch.all(torch.isfinite(v_nrm_out))
assert v_tng_out is None or torch.all(torch.isfinite(v_tng_out))
return Mesh(v_pos=v_pos_out[:, :3], v_nrm=v_nrm_out, v_tng=v_tng_out, base=imesh)
return mesh_op_skinning(mesh)
# Skinning helper functions
def guess_weights(base_mesh, ref_mesh, N=10):
base_v_pos = base_mesh.v_pos.detach().cpu().numpy()
ref_v_pos = ref_mesh.v_pos.detach().cpu().numpy()
ref_v_weights = ref_mesh.v_weights.detach().cpu().numpy()
base_v_weights = np.zeros((base_v_pos.shape[0], ref_v_weights.shape[1]), dtype=np.float32)
for v_idx, vtx in enumerate(base_v_pos):
# Compute distance from current vertex to vertices in ref_mesh
diff = ref_v_pos - vtx[None, ...]
dist = np.sum(diff * diff, axis=-1)
idxs = np.argpartition(dist, N)
# Get the N nearest vertices
sum_w = 0.0
sum_vtx_w = np.zeros_like(ref_v_weights[0,...])
for i in idxs[:N]:
sum_w += 1.0 / max(dist[i], 0.001)
sum_vtx_w += ref_v_weights[i, ...] / max(dist[i], 0.001)
base_v_weights[v_idx, ...] = sum_vtx_w / sum_w
return base_v_weights
def random_weights(base_mesh, ref_mesh):
init = np.random.uniform(size=(base_mesh.v_pos.shape[0], ref_mesh.v_weights.shape[1]), low=0.0, high=1.0)
return init / np.sum(init, axis=1, keepdims=True)
######################################################################################
# Simple smooth vertex normal computation
######################################################################################
def auto_normals(mesh):
class mesh_op_auto_normals:
def __init__(self, input):
self.input = input
def eval(self, params={}):
imesh = self.input.eval(params)
i0 = imesh.t_pos_idx[:, 0]
i1 = imesh.t_pos_idx[:, 1]
i2 = imesh.t_pos_idx[:, 2]
v0 = imesh.v_pos[i0, :]
v1 = imesh.v_pos[i1, :]
v2 = imesh.v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(imesh.v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
self.v_nrm = util.safe_normalize(v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(self.v_nrm))
return Mesh(v_nrm = self.v_nrm, t_nrm_idx=imesh.t_pos_idx, base = imesh)
return mesh_op_auto_normals(mesh)
######################################################################################
# Compute tangent space from texture map coordinates
# Follows http://www.mikktspace.com/ conventions
######################################################################################
def compute_tangents(mesh):
class mesh_op_compute_tangents:
def __init__(self, input):
self.input = input
def eval(self, params={}):
imesh = self.input.eval(params)
vn_idx = [None] * 3
pos = [None] * 3
tex = [None] * 3
for i in range(0,3):
pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]]
tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]]
vn_idx[i] = imesh.t_nrm_idx[:, i]
tangents = torch.zeros_like(imesh.v_nrm)
tansum = torch.zeros_like(imesh.v_nrm)
# Compute tangent space for each triangle
uve1 = tex[1] - tex[0]
uve2 = tex[2] - tex[0]
pe1 = pos[1] - pos[0]
pe2 = pos[2] - pos[0]
nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2])
denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1])
# Avoid division by zero for degenerated texture coordinates
tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6))
# Update all 3 vertices
for i in range(0,3):
idx = vn_idx[i][:, None].repeat(1,3)
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
tansum.scatter_add_(0, idx, torch.ones_like(tang)) # tansum[n_i] = tansum[n_i] + 1
tangents = tangents / tansum
# Normalize and make sure tangent is perpendicular to normal
tangents = util.safe_normalize(tangents)
tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm)
self.v_tng = tangents
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(tangents))
return Mesh(v_tng=self.v_tng, t_tng_idx=imesh.t_nrm_idx, base=imesh)
return mesh_op_compute_tangents(mesh)
######################################################################################
# Subdivide each triangle into 4 new ones. Edge midpoint subdivision
######################################################################################
def subdivide(mesh, steps=1):
class mesh_op_subdivide:
def __init__(self, input):
self.input = input
self.new_vtx_idx = [None] * 4
self.new_tri_idx = [None] * 4
imesh = self.input.eval()
v_attr = v_attr_orig = [imesh.v_pos, imesh.v_nrm, imesh.v_tex, imesh.v_tng]
v_idx = v_idx_orig = [imesh.t_pos_idx, imesh.t_nrm_idx, imesh.t_tex_idx, imesh.t_tng_idx]
for i, attr in enumerate(v_attr):
if attr is not None:
tri_idx = v_idx[i].cpu().numpy()
# Find unique edges
edge_fetch_a = []
edge_fetch_b = []
edge_verts = {}
for tri in tri_idx:
for e_idx in range(0, 3):
v0 = tri[e_idx]
v1 = tri[(e_idx + 1) % 3]
if (v1, v0) not in edge_verts.keys():
edge_verts[(v0, v1)] = [len(edge_fetch_a), v0, v1]
edge_fetch_a += [v0]
edge_fetch_b += [v1]
# Create vertex fetch lists for computing midpoint vertices
self.new_vtx_idx[i] = [torch.tensor(edge_fetch_a, dtype=torch.int64, device='cuda'), torch.tensor(edge_fetch_b, dtype=torch.int64, device='cuda')]
# Create subdivided triangles
new_tri_idx = []
for tri in tri_idx:
v0, v1, v2= tri
h0 = (edge_verts[(v0, v1)][0] if (v0, v1) in edge_verts.keys() else edge_verts[(v1, v0)][0]) + attr.shape[0]
h1 = (edge_verts[(v1, v2)][0] if (v1, v2) in edge_verts.keys() else edge_verts[(v2, v1)][0]) + attr.shape[0]
h2 = (edge_verts[(v2, v0)][0] if (v2, v0) in edge_verts.keys() else edge_verts[(v0, v2)][0]) + attr.shape[0]
new_tri_idx += [[v0, h0, h2], [h0, v1, h1], [h1, v2, h2], [h0, h1, h2]]
self.new_tri_idx[i] = torch.tensor(new_tri_idx, dtype=torch.int64, device='cuda')
def eval(self, params={}):
imesh = self.input.eval(params)
v_attr = v_attr_orig = [imesh.v_pos, imesh.v_nrm, imesh.v_tex, imesh.v_tng]
v_idx = v_idx_orig = [imesh.t_pos_idx, imesh.t_nrm_idx, imesh.t_tex_idx, imesh.t_tng_idx]
for i, attr in enumerate(v_attr):
if attr is not None:
# Create new edge midpoint attributes
edge_attr = (attr[self.new_vtx_idx[i][0], :] + attr[self.new_vtx_idx[i][1], :]) * 0.5
v_attr[i] = torch.cat([attr, edge_attr], dim=0)
# Copy new triangle lists
v_idx[i] = self.new_tri_idx[i]
return Mesh(v_attr[0], v_idx[0], v_attr[1], v_idx[1], v_attr[2], v_idx[2], v_attr[3], v_idx[3], base=imesh)
x = mesh
for i in range(steps):
x = mesh_op_subdivide(x)
bm = mesh.eval()
sm = x.eval()
v_attr_orig = [bm.v_pos, bm.v_nrm, bm.v_tex, bm.v_tng]
v_attr = [sm.v_pos, sm.v_nrm, sm.v_tex, sm.v_tng]
v_idx_orig = [bm.t_pos_idx, bm.t_nrm_idx, bm.t_tex_idx, bm.t_tng_idx]
v_idx = [sm.t_pos_idx, sm.t_nrm_idx, sm.t_tex_idx, sm.t_tng_idx]
print("Subdivided mesh:")
print(" Attrs: [%6d, %6d, %6d, %6d] -> [%6d, %6d, %6d, %6d]" % tuple(list((a.shape[0] if a is not None else 0) for a in v_attr_orig) + list((a.shape[0] if a is not None else 0) for a in v_attr)))
print(" Indices: [%6d, %6d, %6d, %6d] -> [%6d, %6d, %6d, %6d]" % tuple(list((a.shape[0] if a is not None else 0) for a in v_idx_orig) + list((a.shape[0] if a is not None else 0) for a in v_idx)))
return x
######################################################################################
# Displacement mapping
######################################################################################
def displace(mesh, displacement_map, scale=1.0, keep_connectivity=True):
class mesh_op_displace:
def __init__(self, input, displacement_map, scale, keep_connectivity):
self.input = input
self.displacement_map = displacement_map
self.scale = scale
self.keep_connectivity = keep_connectivity
def eval(self, params={}):
imesh = self.input.eval(params)
if self.keep_connectivity:
vd = torch.zeros_like(imesh.v_pos)
vd_n = torch.zeros_like(imesh.v_pos)
for i in range(0, 3):
v = imesh.v_pos[imesh.t_pos_idx[:, i], :]
n = imesh.v_nrm[imesh.t_nrm_idx[:, i], :]
t = imesh.v_tex[imesh.t_tex_idx[:, i], :]
v_displ = v + n * self.scale * util.tex_2d(self.displacement_map, t)
splat_idx = imesh.t_pos_idx[:, i, None].repeat(1,3)
vd.scatter_add_(0, splat_idx, v_displ)
vd_n.scatter_add_(0, splat_idx, torch.ones_like(v_displ))
return Mesh(vd / vd_n, base=imesh)
else:
vd = torch.zeros([imesh.v_tex.shape[0], 3], dtype=torch.float32, device='cuda')
vd_n = torch.zeros([imesh.v_tex.shape[0], 3], dtype=torch.float32, device='cuda')
for i in range(0, 3):
v = imesh.v_pos[imesh.t_pos_idx[:, i], :]
n = imesh.v_nrm[imesh.t_nrm_idx[:, i], :]
t = imesh.v_tex[imesh.t_tex_idx[:, i], :]
v_displ = v + n * self.scale * util.tex_2d(self.displacement_map, t)
splat_idx = imesh.t_tex_idx[:, i, None].repeat(1, 3)
vd.scatter_add_(0, splat_idx, v_displ)
vd_n.scatter_add_(0, splat_idx, torch.ones_like(v_displ))
return Mesh(vd / vd_n, mesh.t_tex_idx, base=imesh)
return mesh_op_displace(mesh, displacement_map, scale, keep_connectivity)
######################################################################################
# Utilities to merge meshes / materials. No mesh-ops or differentiable stuff here.
######################################################################################
def merge(mesh_a, mesh_b):
def _merge_attr_idx(a, b, a_idx, b_idx):
if a is None and b is None:
return None, None
elif a is not None and b is None:
return a, a_idx
elif a is None and b is not None:
return b, b_idx
else:
return torch.cat((a, b), dim=0), torch.cat((a_idx, b_idx + a.shape[0]), dim=0)
v_pos, t_pos_idx = _merge_attr_idx(mesh_a.v_pos, mesh_b.v_pos, mesh_a.t_pos_idx, mesh_b.t_pos_idx)
v_nrm, t_nrm_idx = _merge_attr_idx(mesh_a.v_nrm, mesh_b.v_nrm, mesh_a.t_nrm_idx, mesh_b.t_nrm_idx)
v_tng, t_tng_idx = _merge_attr_idx(mesh_a.v_tng, mesh_b.v_tng, mesh_a.t_tng_idx, mesh_b.t_tng_idx)
v_tex, t_tex_idx = _merge_attr_idx(mesh_a.v_tex, mesh_b.v_tex, mesh_a.t_tex_idx, mesh_b.t_tex_idx)
if mesh_a.v_weights is None and mesh_b.v_weights is None:
v_weights, bone_mtx = None, None
elif mesh_a.v_weights is not None and mesh_b.v_weights is None:
v_weights, bone_mtx = mesh_a.v_weights, mesh_a.bone_mtx
elif mesh_a.v_weights is None and mesh_b.v_weights is not None:
v_weights, bone_mtx = mesh_b.v_weights, mesh_b.bone_mtx
else:
if torch.all(mesh_a.bone_mtx == mesh_b.bone_mtx): # TODO: Wanted to test if same pointer
bone_mtx = mesh_a.bone_mtx
v_weights = torch.cat((mesh_a.v_weights, mesh_b.v_weights), dim=0)
else:
bone_mtx = torch.cat((mesh_a.bone_mtx, mesh_b.bone_mtx), dim=1) # Frame, Bone, ...
# Weights need to be increased to account for all bones
v_wa = torch.nn.functional.pad(mesh_a.v_weights, [0, mesh_b.v_weights.shape[1]]) #Pad weights_a with shape of weights_b
v_wb = torch.nn.functional.pad(mesh_b.v_weights, [mesh_a.v_weights.shape[1], 0]) #Pad weights_b with shape of weights_a
v_weights = torch.cat((v_wa, v_wb), dim=0)
return Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx, v_nrm=v_nrm, t_nrm_idx=t_nrm_idx, v_tng=v_tng, t_tng_idx=t_tng_idx, v_tex=v_tex, t_tex_idx=t_tex_idx, v_weights=v_weights, bone_mtx=bone_mtx, base=mesh_a)
|