File size: 31,828 Bytes
f498ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
// Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.

#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>
#include <algorithm>
#include <string>

#define NVDR_CHECK_CUDA_ERROR(CUDA_CALL) { cudaError_t err = CUDA_CALL; AT_CUDA_CHECK(cudaGetLastError()); }
#define NVDR_CHECK_GL_ERROR(GL_CALL) { GL_CALL; GLenum err = glGetError(); TORCH_CHECK(err == GL_NO_ERROR, "OpenGL error: ", getGLErrorString(err), "[", #GL_CALL, ";]"); }
#define CHECK_TENSOR(X, DIMS, CHANNELS) \
    TORCH_CHECK(X.is_cuda(), #X " must be a cuda tensor") \
    TORCH_CHECK(X.scalar_type() == torch::kFloat || X.scalar_type() == torch::kBFloat16, #X " must be fp32 or bf16") \
    TORCH_CHECK(X.dim() == DIMS, #X " must have " #DIMS " dimensions") \
    TORCH_CHECK(X.size(DIMS - 1) == CHANNELS, #X " must have " #CHANNELS " channels")

#include "common.h"
#include "loss.h"
#include "normal.h"
#include "bsdf.h"
#include "mesh.h"

#define BLOCK_X 8
#define BLOCK_Y 8

//------------------------------------------------------------------------
// mesh.cu

void xfmPointsFwdKernel(XfmKernelParams p);
void xfmPointsBwdKernel(XfmKernelParams p);

//------------------------------------------------------------------------
// loss.cu

void imgLossFwdKernel(LossKernelParams p);
void imgLossBwdKernel(LossKernelParams p);

//------------------------------------------------------------------------
// normal.cu

void PrepareShadingNormalFwdKernel(PrepareShadingNormalKernelParams p);
void PrepareShadingNormalBwdKernel(PrepareShadingNormalKernelParams p);

//------------------------------------------------------------------------
// bsdf.cu

void LambertFwdKernel(LambertKernelParams p);
void LambertBwdKernel(LambertKernelParams p);

void FresnelShlickFwdKernel(FresnelShlickKernelParams p);
void FresnelShlickBwdKernel(FresnelShlickKernelParams p);

void ndfGGXFwdKernel(NdfGGXParams p);
void ndfGGXBwdKernel(NdfGGXParams p);

void lambdaGGXFwdKernel(NdfGGXParams p);
void lambdaGGXBwdKernel(NdfGGXParams p);

void maskingSmithFwdKernel(MaskingSmithParams p);
void maskingSmithBwdKernel(MaskingSmithParams p);

void pbrSpecularFwdKernel(PbrSpecular p);
void pbrSpecularBwdKernel(PbrSpecular p);

void pbrBSDFFwdKernel(PbrBSDF p);
void pbrBSDFBwdKernel(PbrBSDF p);

//------------------------------------------------------------------------
// Tensor helpers

void update_grid(dim3 &gridSize, torch::Tensor x)
{
    gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2));
    gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1));
    gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0));
}

template<typename... Ts>
void update_grid(dim3& gridSize, torch::Tensor x, Ts&&... vs)
{
    gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2));
    gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1));
    gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0));
    update_grid(gridSize, std::forward<Ts>(vs)...);
}

Tensor make_cuda_tensor(torch::Tensor val, dim3 outDims, torch::Tensor* grad = nullptr)
{
    Tensor res;
    for (int i = 0; i < val.dim(); ++i)
    {
        res.dims[i] = val.size(i);
        res.strides[i] = val.stride(i);
    }

    res.fp16 = val.scalar_type() == torch::kBFloat16;
    res.val = res.fp16 ? (void*)val.data_ptr<torch::BFloat16>() : (void*)val.data_ptr<float>();
    res.d_val = nullptr;
    if (grad != nullptr)
    {
        if (val.dim() == 4)
            *grad = torch::empty({ outDims.z, outDims.y, outDims.x, val.size(3) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA));
        else // 3
            *grad = torch::empty({ outDims.z, outDims.x, val.size(2) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA));

        res.d_val = res.fp16 ? (void*)grad->data_ptr<torch::BFloat16>() : (void*)grad->data_ptr<float>();
    }
    return res;
}

//------------------------------------------------------------------------
// prepare_shading_normal

torch::Tensor prepare_shading_normal_fwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, bool two_sided_shading, bool opengl, bool fp16)
{
    CHECK_TENSOR(pos, 4, 3);
    CHECK_TENSOR(view_pos, 4, 3);
    CHECK_TENSOR(perturbed_nrm, 4, 3);
    CHECK_TENSOR(smooth_nrm, 4, 3);
    CHECK_TENSOR(smooth_tng, 4, 3);
    CHECK_TENSOR(geom_nrm, 4, 3);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PrepareShadingNormalKernelParams p;
    p.two_sided_shading = two_sided_shading;
    p.opengl = opengl;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    // Setup tensors
    p.pos = make_cuda_tensor(pos, p.gridSize);
    p.view_pos = make_cuda_tensor(view_pos, p.gridSize);
    p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize);
    p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize);
    p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize);
    p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> prepare_shading_normal_bwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, torch::Tensor grad, bool two_sided_shading, bool opengl)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PrepareShadingNormalKernelParams p;
    p.two_sided_shading = two_sided_shading;
    p.opengl = opengl;
    update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    // Setup tensors
    torch::Tensor pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad;
    p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad);
    p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad);
    p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize, &perturbed_nrm_grad);
    p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize, &smooth_nrm_grad);
    p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize, &smooth_tng_grad);
    p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize, &geom_nrm_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad);
}

//------------------------------------------------------------------------
// lambert

torch::Tensor lambert_fwd(torch::Tensor nrm, torch::Tensor wi, bool fp16)
{
    CHECK_TENSOR(nrm, 4, 3);
    CHECK_TENSOR(wi, 4, 3);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    LambertKernelParams p;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, nrm, wi);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.nrm = make_cuda_tensor(nrm, p.gridSize);
    p.wi = make_cuda_tensor(wi, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor> lambert_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    LambertKernelParams p;
    update_grid(p.gridSize, nrm, wi);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor nrm_grad, wi_grad;
    p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
    p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor>(nrm_grad, wi_grad);
}

//------------------------------------------------------------------------
// fresnel_shlick

torch::Tensor fresnel_shlick_fwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, bool fp16)
{
    CHECK_TENSOR(f0, 4, 3);
    CHECK_TENSOR(f90, 4, 3);
    CHECK_TENSOR(cosTheta, 4, 1);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    FresnelShlickKernelParams p;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, f0, f90, cosTheta);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.f0 = make_cuda_tensor(f0, p.gridSize);
    p.f90 = make_cuda_tensor(f90, p.gridSize);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> fresnel_shlick_bwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    FresnelShlickKernelParams p;
    update_grid(p.gridSize, f0, f90, cosTheta);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor f0_grad, f90_grad, cosT_grad;
    p.f0 = make_cuda_tensor(f0, p.gridSize, &f0_grad);
    p.f90 = make_cuda_tensor(f90, p.gridSize, &f90_grad);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosT_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(f0_grad, f90_grad, cosT_grad);
}

//------------------------------------------------------------------------
// ndf_ggd

torch::Tensor ndf_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16)
{
    CHECK_TENSOR(alphaSqr, 4, 1);
    CHECK_TENSOR(cosTheta, 4, 1);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    NdfGGXParams p;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, alphaSqr, cosTheta);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor> ndf_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    NdfGGXParams p;
    update_grid(p.gridSize, alphaSqr, cosTheta);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor alphaSqr_grad, cosTheta_grad;
    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad);
}

//------------------------------------------------------------------------
// lambda_ggx

torch::Tensor lambda_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16)
{
    CHECK_TENSOR(alphaSqr, 4, 1);
    CHECK_TENSOR(cosTheta, 4, 1);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    NdfGGXParams p;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, alphaSqr, cosTheta);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor> lambda_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    NdfGGXParams p;
    update_grid(p.gridSize, alphaSqr, cosTheta);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor alphaSqr_grad, cosTheta_grad;
    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
    p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad);
}

//------------------------------------------------------------------------
// masking_smith

torch::Tensor masking_smith_fwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, bool fp16)
{
    CHECK_TENSOR(alphaSqr, 4, 1);
    CHECK_TENSOR(cosThetaI, 4, 1);
    CHECK_TENSOR(cosThetaO, 4, 1);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    MaskingSmithParams p;
    p.out.fp16 = fp16;
    update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
    p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize);
    p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> masking_smith_bwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    MaskingSmithParams p;
    update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor alphaSqr_grad, cosThetaI_grad, cosThetaO_grad;
    p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
    p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize, &cosThetaI_grad);
    p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize, &cosThetaO_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(alphaSqr_grad, cosThetaI_grad, cosThetaO_grad);
}

//------------------------------------------------------------------------
// pbr_specular

torch::Tensor pbr_specular_fwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, bool fp16)
{
    CHECK_TENSOR(col, 4, 3);
    CHECK_TENSOR(nrm, 4, 3);
    CHECK_TENSOR(wo, 4, 3);
    CHECK_TENSOR(wi, 4, 3);
    CHECK_TENSOR(alpha, 4, 1);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PbrSpecular p;
    p.out.fp16 = fp16;
    p.min_roughness = min_roughness;
    update_grid(p.gridSize, col, nrm, wo, wi, alpha);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.col = make_cuda_tensor(col, p.gridSize);
    p.nrm = make_cuda_tensor(nrm, p.gridSize);
    p.wo = make_cuda_tensor(wo, p.gridSize);
    p.wi = make_cuda_tensor(wi, p.gridSize);
    p.alpha = make_cuda_tensor(alpha, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_specular_bwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PbrSpecular p;
    update_grid(p.gridSize, col, nrm, wo, wi, alpha);
    p.min_roughness = min_roughness;

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad;
    p.col = make_cuda_tensor(col, p.gridSize, &col_grad);
    p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
    p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad);
    p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad);
    p.alpha = make_cuda_tensor(alpha, p.gridSize, &alpha_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad);
}

//------------------------------------------------------------------------
// pbr_bsdf

torch::Tensor pbr_bsdf_fwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, bool fp16)
{
    CHECK_TENSOR(kd, 4, 3);
    CHECK_TENSOR(arm, 4, 3);
    CHECK_TENSOR(pos, 4, 3);
    CHECK_TENSOR(nrm, 4, 3);
    CHECK_TENSOR(view_pos, 4, 3);
    CHECK_TENSOR(light_pos, 4, 3);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PbrBSDF p;
    p.out.fp16 = fp16;
    p.min_roughness = min_roughness;
    update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    p.kd = make_cuda_tensor(kd, p.gridSize);
    p.arm = make_cuda_tensor(arm, p.gridSize);
    p.pos = make_cuda_tensor(pos, p.gridSize);
    p.nrm = make_cuda_tensor(nrm, p.gridSize);
    p.view_pos = make_cuda_tensor(view_pos, p.gridSize);
    p.light_pos = make_cuda_tensor(light_pos, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_bsdf_bwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, torch::Tensor grad)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    PbrBSDF p;
    update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos);
    p.min_roughness = min_roughness;

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad;
    p.kd = make_cuda_tensor(kd, p.gridSize, &kd_grad);
    p.arm = make_cuda_tensor(arm, p.gridSize, &arm_grad);
    p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad);
    p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
    p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad);
    p.light_pos = make_cuda_tensor(light_pos, p.gridSize, &light_pos_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad);
}

//------------------------------------------------------------------------
// loss function

LossType strToLoss(std::string str)
{
    if (str == "mse")
        return LOSS_MSE;
    else if (str == "relmse")
        return LOSS_RELMSE;
    else if (str == "smape")
        return LOSS_SMAPE;
    else
        return LOSS_L1;
}

torch::Tensor image_loss_fwd(torch::Tensor img, torch::Tensor target, std::string loss, std::string tonemapper, bool fp16)
{
    CHECK_TENSOR(img, 4, 3);
    CHECK_TENSOR(target, 4, 3);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    LossKernelParams p;
    p.out.fp16 = fp16;
    p.loss = strToLoss(loss);
    p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE;
    update_grid(p.gridSize, img, target);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 warpSize = getWarpSize(blockSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = torch::empty({ (p.gridSize.z - 1) / warpSize.z + 1, (p.gridSize.y - 1) / warpSize.y + 1, (p.gridSize.x - 1) / warpSize.x + 1, 1 }, opts);

    p.img = make_cuda_tensor(img, p.gridSize);
    p.target = make_cuda_tensor(target, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

std::tuple<torch::Tensor, torch::Tensor> image_loss_bwd(torch::Tensor img, torch::Tensor target, torch::Tensor grad, std::string loss, std::string tonemapper)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    LossKernelParams p;
    p.loss = strToLoss(loss);
    p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE;
    update_grid(p.gridSize, img, target);

    // Choose launch parameters.
    dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
    dim3 warpSize = getWarpSize(blockSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor img_grad, target_grad;
    p.img = make_cuda_tensor(img, p.gridSize, &img_grad);
    p.target = make_cuda_tensor(target, p.gridSize, &target_grad);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossBwdKernel, gridSize, blockSize, args, 0, stream));

    return std::tuple<torch::Tensor, torch::Tensor>(img_grad, target_grad);
}

//------------------------------------------------------------------------
// transform function

torch::Tensor xfm_fwd(torch::Tensor points, torch::Tensor matrix, bool isPoints, bool fp16)
{
    CHECK_TENSOR(points, 3, 3);
    CHECK_TENSOR(matrix, 3, 4);

    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    XfmKernelParams p;
    p.out.fp16 = fp16;
    p.isPoints = isPoints;
    p.gridSize.x = points.size(1);
    p.gridSize.y = 1;
    p.gridSize.z = std::max(matrix.size(0), points.size(0));

    // Choose launch parameters.
    dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1);
    dim3 warpSize = getWarpSize(blockSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    // Allocate output tensors.
    torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
    torch::Tensor out = isPoints ? torch::empty({ matrix.size(0), points.size(1), 4 }, opts) : torch::empty({ matrix.size(0), points.size(1), 3 }, opts);

    p.points = make_cuda_tensor(points, p.gridSize);
    p.matrix = make_cuda_tensor(matrix, p.gridSize);
    p.out = make_cuda_tensor(out, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsFwdKernel, gridSize, blockSize, args, 0, stream));

    return out;
}

torch::Tensor xfm_bwd(torch::Tensor points, torch::Tensor matrix, torch::Tensor grad, bool isPoints)
{
    cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    // Extract input parameters.
    XfmKernelParams p;
    p.isPoints = isPoints;
    p.gridSize.x = points.size(1);
    p.gridSize.y = 1;
    p.gridSize.z = std::max(matrix.size(0), points.size(0));

    // Choose launch parameters.
    dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1);
    dim3 warpSize = getWarpSize(blockSize);
    dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);

    torch::Tensor points_grad;
    p.points = make_cuda_tensor(points, p.gridSize, &points_grad);
    p.matrix = make_cuda_tensor(matrix, p.gridSize);
    p.out = make_cuda_tensor(grad, p.gridSize);

    // Launch CUDA kernel.
    void* args[] = { &p };
    NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsBwdKernel, gridSize, blockSize, args, 0, stream));

    return points_grad;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("prepare_shading_normal_fwd", &prepare_shading_normal_fwd, "prepare_shading_normal_fwd");
    m.def("prepare_shading_normal_bwd", &prepare_shading_normal_bwd, "prepare_shading_normal_bwd");
    m.def("lambert_fwd", &lambert_fwd, "lambert_fwd");
    m.def("lambert_bwd", &lambert_bwd, "lambert_bwd");
    m.def("fresnel_shlick_fwd", &fresnel_shlick_fwd, "fresnel_shlick_fwd");
    m.def("fresnel_shlick_bwd", &fresnel_shlick_bwd, "fresnel_shlick_bwd");
    m.def("ndf_ggx_fwd", &ndf_ggx_fwd, "ndf_ggx_fwd");
    m.def("ndf_ggx_bwd", &ndf_ggx_bwd, "ndf_ggx_bwd");
    m.def("lambda_ggx_fwd", &lambda_ggx_fwd, "lambda_ggx_fwd");
    m.def("lambda_ggx_bwd", &lambda_ggx_bwd, "lambda_ggx_bwd");
    m.def("masking_smith_fwd", &masking_smith_fwd, "masking_smith_fwd");
    m.def("masking_smith_bwd", &masking_smith_bwd, "masking_smith_bwd");
    m.def("pbr_specular_fwd", &pbr_specular_fwd, "pbr_specular_fwd");
    m.def("pbr_specular_bwd", &pbr_specular_bwd, "pbr_specular_bwd");
    m.def("pbr_bsdf_fwd", &pbr_bsdf_fwd, "pbr_bsdf_fwd");
    m.def("pbr_bsdf_bwd", &pbr_bsdf_bwd, "pbr_bsdf_bwd");
    m.def("image_loss_fwd", &image_loss_fwd, "image_loss_fwd");
    m.def("image_loss_bwd", &image_loss_bwd, "image_loss_bwd");
    m.def("xfm_fwd", &xfm_fwd, "xfm_fwd");
    m.def("xfm_bwd", &xfm_bwd, "xfm_bwd");
}