Spaces:
Paused
Paused
| import torch | |
| from PIL import Image | |
| def get_fashion_text_embeddings(fclip, cfg, device): | |
| print(f'Target text prompt is {cfg.text_prompt}') | |
| print(f'Base text prompt is {cfg.base_text_prompt}') | |
| with torch.no_grad(): | |
| text_embeds = fclip.encode_text_tensors([cfg.text_prompt]).detach() | |
| base_text_embeds = fclip.encode_text_tensors([cfg.base_text_prompt]).detach() | |
| target_text_embeds = text_embeds.clone() / text_embeds.norm(dim=1, keepdim=True) | |
| delta_text_embeds = text_embeds - base_text_embeds | |
| delta_text_embeds = delta_text_embeds / delta_text_embeds.norm(dim=1, keepdim=True) | |
| return target_text_embeds.to(device), delta_text_embeds.to(device) | |
| def get_fashion_img_embeddings(fclip, cfg, device, normalize=True): | |
| print(f'Target image path is {cfg.image_prompt}') | |
| print(f'Base image path is {cfg.base_image_prompt}') | |
| with torch.no_grad(): | |
| target_image_embeds = fclip.encode_images([cfg.image_prompt], 1) | |
| target_image_embeds = torch.tensor(target_image_embeds, device=device).detach() | |
| base_image_embeds = fclip.encode_images([cfg.base_image_prompt], 1) | |
| base_image_embeds = torch.tensor(base_image_embeds, device=device).detach() | |
| delta_img_embeds = target_image_embeds - base_image_embeds | |
| if normalize: | |
| delta_img_embeds = delta_img_embeds / delta_img_embeds.norm(dim=1, keepdim=True) | |
| target_image_embeds = target_image_embeds.clone() / target_image_embeds.norm(dim=1, keepdim=True) | |
| return target_image_embeds.to(device), delta_img_embeds.to(device) | |
| def get_text_embeddings(clip, model, cfg, device): | |
| print(f'Target text prompt is {cfg.text_prompt}') | |
| print(f'Base text prompt is {cfg.base_text_prompt}') | |
| text_embeds = clip.tokenize(cfg.text_prompt).to(device) | |
| base_text_embeds = clip.tokenize(cfg.base_text_prompt).to(device) | |
| with torch.no_grad(): | |
| text_embeds = model.encode_text(text_embeds).detach() | |
| target_text_embeds = text_embeds.clone() / text_embeds.norm(dim=1, keepdim=True) | |
| delta_text_embeds = text_embeds - model.encode_text(base_text_embeds) | |
| delta_text_embeds = delta_text_embeds / delta_text_embeds.norm(dim=1, keepdim=True) | |
| return target_text_embeds, delta_text_embeds | |
| def get_img_embeddings(model, preprocess, cfg, device): | |
| print(f'Target image path is {cfg.image_prompt}') | |
| print(f'Base image path is {cfg.base_image_prompt}') | |
| image = preprocess(Image.open(cfg.image_prompt)).unsqueeze(0).to(device) | |
| base_image = preprocess(Image.open(cfg.base_image_prompt)).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| target_image_embeds = model.encode_image(image).to(device).detach() | |
| base_image_embeds = model.encode_image(base_image).to(device) | |
| delta_img_embeds = target_image_embeds - base_image_embeds | |
| delta_img_embeds = delta_img_embeds / delta_img_embeds.norm(dim=1, keepdim=True) | |
| return target_image_embeds, delta_img_embeds | |