Stylique's picture
Upload 65 files
f498ac0 verified
raw
history blame
14.2 kB
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import sys
import numpy as np
import torch
import nvdiffrast.torch as dr
import imageio
#----------------------------------------------------------------------------
# Vector operations
#----------------------------------------------------------------------------
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
#----------------------------------------------------------------------------
# Tonemapping
#----------------------------------------------------------------------------
def tonemap_srgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f)
#----------------------------------------------------------------------------
# sRGB color transforms
#----------------------------------------------------------------------------
def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055)
def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4))
def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
#----------------------------------------------------------------------------
# Displacement texture lookup
#----------------------------------------------------------------------------
def get_miplevels(texture: np.ndarray) -> float:
minDim = min(texture.shape[0], texture.shape[1])
return np.floor(np.log2(minDim))
# TODO: Handle wrapping maybe
def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor:
tex_map = tex_map[None, ...] # Add batch dimension
tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW
tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False)
tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC
return tex[0, 0, ...]
#----------------------------------------------------------------------------
# Image scaling
#----------------------------------------------------------------------------
def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor:
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
y = torch.nn.functional.avg_pool2d(y, size)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Behaves similar to tf.segment_sum
#----------------------------------------------------------------------------
def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor:
num_segments = torch.unique_consecutive(segment_ids).shape[0]
# Repeats ids until same dimension as data
if len(segment_ids.shape) == 1:
s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long()
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal"
shape = [num_segments] + list(data.shape[1:])
result = torch.zeros(*shape, dtype=torch.float32, device='cuda')
result = result.scatter_add(0, segment_ids, data)
return result
#----------------------------------------------------------------------------
# Projection and transformation matrix helpers.
#----------------------------------------------------------------------------
def projection(x=0.1, n=1.0, f=50.0):
return np.array([[n/x, 0, 0, 0],
[ 0, n/-x, 0, 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]]).astype(np.float32)
def translate(x, y, z):
return np.array([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]]).astype(np.float32)
def rotate_x(a):
s, c = np.sin(a), np.cos(a)
return np.array([[1, 0, 0, 0],
[0, c, s, 0],
[0, -s, c, 0],
[0, 0, 0, 1]]).astype(np.float32)
def rotate_y(a):
s, c = np.sin(a), np.cos(a)
return np.array([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]]).astype(np.float32)
def scale(s):
return np.array([[ s, 0, 0, 0],
[ 0, s, 0, 0],
[ 0, 0, s, 0],
[ 0, 0, 0, 1]]).astype(np.float32)
def lookAt(eye, at, up):
a = eye - at
b = up
w = a / np.linalg.norm(a)
u = np.cross(b, w)
u = u / np.linalg.norm(u)
v = np.cross(w, u)
translate = np.array([[1, 0, 0, -eye[0]],
[0, 1, 0, -eye[1]],
[0, 0, 1, -eye[2]],
[0, 0, 0, 1]]).astype(np.float32)
rotate = np.array([[u[0], u[1], u[2], 0],
[v[0], v[1], v[2], 0],
[w[0], w[1], w[2], 0],
[0, 0, 0, 1]]).astype(np.float32)
return np.matmul(rotate, translate)
def random_rotation_translation(t):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return m
#----------------------------------------------------------------------------
# Cosine sample around a vector N
#----------------------------------------------------------------------------
def cosine_sample(N : np.ndarray) -> np.ndarray:
# construct local frame
N = N/np.linalg.norm(N)
dx0 = np.array([0, N[2], -N[1]])
dx1 = np.array([-N[2], 0, N[0]])
dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1
dx = dx/np.linalg.norm(dx)
dy = np.cross(N,dx)
dy = dy/np.linalg.norm(dy)
# cosine sampling in local frame
phi = 2.0*np.pi*np.random.uniform()
s = np.random.uniform()
costheta = np.sqrt(s)
sintheta = np.sqrt(1.0 - s)
# cartesian vector in local space
x = np.cos(phi)*sintheta
y = np.sin(phi)*sintheta
z = costheta
# local to world
return dx*x + dy*y + N*z
#----------------------------------------------------------------------------
# Cosine sampled light directions around the vector N
#----------------------------------------------------------------------------
def cosine_sample_texture(res, N : np.ndarray) -> torch.Tensor:
# construct local frame
N = N/np.linalg.norm(N)
dx0 = np.array([0, N[2], -N[1]])
dx1 = np.array([-N[2], 0, N[0]])
dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1
dx = dx/np.linalg.norm(dx)
dy = np.cross(N,dx)
dy = dy/np.linalg.norm(dy)
X = torch.tensor(dx, dtype=torch.float32, device='cuda')
Y = torch.tensor(dy, dtype=torch.float32, device='cuda')
Z = torch.tensor(N, dtype=torch.float32, device='cuda')
# cosine sampling in local frame
phi = 2.0*np.pi*torch.rand(res, res, 1, dtype=torch.float32, device='cuda')
s = torch.rand(res, res, 1, dtype=torch.float32, device='cuda')
costheta = torch.sqrt(s)
sintheta = torch.sqrt(1.0 - s)
# cartesian vector in local space
x = torch.cos(phi)*sintheta
y = torch.sin(phi)*sintheta
z = costheta
# local to world
return X*x + Y*y + Z*z
#----------------------------------------------------------------------------
# Bilinear downsample by 2x.
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
w = w.expand(x.shape[-1], 1, 4, 4)
x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1])
return x.permute(0, 2, 3, 1)
#----------------------------------------------------------------------------
# Bilinear downsample log(spp) steps
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
g = x.shape[-1]
w = w.expand(g, 1, 4, 4)
x = x.permute(0, 3, 1, 2) # NHWC -> NCHW
steps = int(np.log2(spp))
for _ in range(steps):
xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate')
x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g)
return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Image display function using OpenGL.
#----------------------------------------------------------------------------
_glfw_window = None
def display_image(image, zoom=None, size=None, title=None): # HWC
# Import OpenGL and glfw.
import OpenGL.GL as gl
import glfw
# Zoom image if requested.
image = np.asarray(image)
if size is not None:
assert zoom is None
zoom = max(1, size // image.shape[0])
if zoom is not None:
image = image.repeat(zoom, axis=0).repeat(zoom, axis=1)
height, width, channels = image.shape
# Initialize window.
if title is None:
title = 'Debug window'
global _glfw_window
if _glfw_window is None:
glfw.init()
_glfw_window = glfw.create_window(width, height, title, None, None)
glfw.make_context_current(_glfw_window)
glfw.show_window(_glfw_window)
glfw.swap_interval(0)
else:
glfw.make_context_current(_glfw_window)
glfw.set_window_title(_glfw_window, title)
glfw.set_window_size(_glfw_window, width, height)
# Update window.
glfw.poll_events()
gl.glClearColor(0, 0, 0, 1)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glWindowPos2f(0, 0)
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels]
gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name]
gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1])
glfw.swap_buffers(_glfw_window)
if glfw.window_should_close(_glfw_window):
return False
return True
#----------------------------------------------------------------------------
# Image save helper.
#----------------------------------------------------------------------------
def save_image(fn, x : np.ndarray) -> np.ndarray:
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
def load_image(fn) -> np.ndarray:
img = imageio.imread(fn)
if img.dtype == np.float32: # HDR image
return img
else: # LDR image
return img.astype(np.float32) / 255
#----------------------------------------------------------------------------
def time_to_text(x):
if x > 3600:
return "%.2f h" % (x / 3600)
elif x > 60:
return "%.2f m" % (x / 60)
else:
return "%.2f s" % x
#----------------------------------------------------------------------------
def checkerboard(width, repetitions) -> np.ndarray:
tilesize = int(width//repetitions//2)
check = np.kron([[1, 0] * repetitions, [0, 1] * repetitions] * repetitions, np.ones((tilesize, tilesize)))*0.33 + 0.33
return np.stack((check, check, check), axis=-1)[None, ...]