import os import sys import yaml import torch import random import numpy as np import gradio as gr from pathlib import Path import tempfile import shutil # Add the current directory to Python path sys.path.append(os.path.dirname(os.path.abspath(__file__))) # Add packages directory to Python path packages_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'packages') if os.path.exists(packages_dir): sys.path.append(packages_dir) try: from loop import loop except ImportError as e: print(f"Error importing loop: {e}") print("Make sure all dependencies are installed correctly") sys.exit(1) # Global variables for configuration DEFAULT_CONFIG = { 'output_path': './outputs', 'gpu': 0, 'seed': 99, 'clip_model': 'ViT-B/32', 'consistency_clip_model': 'ViT-B/32', 'consistency_vit_stride': 8, 'consistency_vit_layer': 11, 'mesh': './meshes/longsleeve.obj', 'target_mesh': './meshes_target/jacket_sdf_new.obj', 'retriangulate': 0, 'bsdf': 'diffuse', 'lr': 0.0025, 'epochs': 1800, 'clip_weight': 2.5, 'delta_clip_weight': 5, 'vgg_weight': 0.0, 'face_weight': 0, 'regularize_jacobians_weight': 0.15, 'consistency_loss_weight': 0, 'consistency_elev_filter': 30, 'consistency_azim_filter': 20, 'batch_size': 24, 'train_res': 512, 'resize_method': 'cubic', 'fov_min': 30.0, 'fov_max': 90.0, 'dist_min': 2.5, 'dist_max': 3.5, 'light_power': 5.0, 'elev_alpha': 1.0, 'elev_beta': 5.0, 'elev_max': 60.0, 'azim_min': 0.0, 'azim_max': 360.0, 'aug_loc': 1, 'aug_light': 1, 'aug_bkg': 0, 'adapt_dist': 1, 'log_interval': 5, 'log_interval_im': 150, 'log_elev': 0, 'log_fov': 60.0, 'log_dist': 3.0, 'log_res': 512, 'log_light_power': 3.0 } def process_garment(text_prompt, base_text_prompt, epochs, learning_rate, clip_weight, delta_clip_weight, progress=gr.Progress()): """ Main function to process garment generation """ try: # Create a temporary output directory with tempfile.TemporaryDirectory() as temp_dir: # Update configuration config = DEFAULT_CONFIG.copy() config.update({ 'output_path': temp_dir, 'text_prompt': text_prompt, 'base_text_prompt': base_text_prompt, 'epochs': int(epochs), 'lr': float(learning_rate), 'clip_weight': float(clip_weight), 'delta_clip_weight': float(delta_clip_weight), 'gpu': 0 # Use first GPU }) # Set random seeds random.seed(config['seed']) os.environ['PYTHONHASHSEED'] = str(config['seed']) np.random.seed(config['seed']) torch.manual_seed(config['seed']) torch.cuda.manual_seed(config['seed']) torch.backends.cudnn.deterministic = True progress(0.1, desc="Initializing...") # Run the main processing loop loop(config) progress(0.9, desc="Processing complete, preparing output...") # Look for output files output_files = [] for file_path in Path(temp_dir).rglob("*"): if file_path.is_file() and file_path.suffix.lower() in ['.obj', '.png', '.jpg', '.jpeg', '.gif', '.mp4']: output_files.append(str(file_path)) if output_files: return output_files[0] if len(output_files) == 1 else output_files else: return "Processing completed but no output files found." except Exception as e: return f"Error during processing: {str(e)}" def create_interface(): """ Create the Gradio interface """ with gr.Blocks(title="Garment3DGen - 3D Garment Stylization", theme=gr.themes.Soft()) as interface: gr.Markdown(""" # Garment3DGen: 3D Garment Stylization and Texture Generation This tool allows you to stylize 3D garments using text prompts. Upload a 3D mesh and describe the desired style to generate a new 3D garment. ## How to use: 1. Enter a text prompt describing the target style (e.g., "leather jacket with studs") 2. Enter a base text prompt describing the input mesh (e.g., "simple t-shirt") 3. Adjust the parameters as needed 4. Click "Generate" to start the process **Note:** Processing may take several minutes depending on the number of epochs. """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Input Parameters") text_prompt = gr.Textbox( label="Target Text Prompt", placeholder="e.g., leather jacket with studs, denim jacket with patches", value="leather jacket with studs" ) base_text_prompt = gr.Textbox( label="Base Text Prompt", placeholder="e.g., simple t-shirt, basic long sleeve shirt", value="simple t-shirt" ) epochs = gr.Slider( minimum=100, maximum=3000, value=1800, step=100, label="Number of Epochs", info="More epochs = better quality but longer processing time" ) learning_rate = gr.Slider( minimum=0.0001, maximum=0.01, value=0.0025, step=0.0001, label="Learning Rate" ) clip_weight = gr.Slider( minimum=0.1, maximum=10.0, value=2.5, step=0.1, label="CLIP Weight" ) delta_clip_weight = gr.Slider( minimum=0.1, maximum=20.0, value=5.0, step=0.1, label="Delta CLIP Weight" ) generate_btn = gr.Button("Generate 3D Garment", variant="primary") with gr.Column(scale=1): gr.Markdown("### Output") output = gr.File(label="Generated 3D Garment") status = gr.Textbox(label="Status", interactive=False) # Connect the button to the processing function generate_btn.click( fn=process_garment, inputs=[text_prompt, base_text_prompt, epochs, learning_rate, clip_weight, delta_clip_weight], outputs=[output] ) gr.Markdown(""" ## Tips for better results: - Be specific in your text prompts - Use descriptive terms for materials, colors, and styles - The base text prompt should accurately describe your input mesh - Higher epoch counts generally produce better results but take longer - Experiment with different CLIP weights for different effects ## Technical Details: This tool uses Neural Jacobian Fields and CLIP embeddings to deform and stylize 3D garment meshes. The process involves optimizing the mesh geometry and texture to match the target text description. """) return interface if __name__ == "__main__": # Create and launch the interface interface = create_interface() interface.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=True )