File size: 11,318 Bytes
6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be fea08e3 6d863be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import base64
from io import BytesIO
from typing import Tuple, Optional
import cv2
import gradio as gr
import numpy as np
from PIL import Image
try:
import mediapipe as mp # type: ignore
HAS_MEDIAPIPE = True
except Exception: # pragma: no cover - optional dependency
HAS_MEDIAPIPE = False
def _ensure_rgb_uint8(image: np.ndarray) -> np.ndarray:
"""Convert an input image array to RGB uint8 format.
Gradio provides images as numpy arrays in RGB order with dtype uint8 by default,
but we defensively normalize here in case inputs vary.
"""
if image is None:
raise ValueError("No image provided")
if isinstance(image, Image.Image):
image = np.array(image.convert("RGB"))
elif image.dtype != np.uint8:
image = image.astype(np.uint8)
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
return image
def _central_crop_bbox(width: int, height: int, frac: float = 0.6) -> Tuple[int, int, int, int]:
"""Return a central crop bounding box (x1, y1, x2, y2) covering `frac` of width/height."""
frac = float(np.clip(frac, 0.2, 1.0))
crop_w = int(width * frac)
crop_h = int(height * frac)
x1 = (width - crop_w) // 2
y1 = (height - crop_h) // 2
x2 = x1 + crop_w
y2 = y1 + crop_h
return x1, y1, x2, y2
def _detect_face_bbox_mediapipe(image_rgb: np.ndarray) -> Optional[Tuple[int, int, int, int]]:
"""Detect a face bounding box using MediaPipe Face Detection and return (x1, y1, x2, y2).
Returns None if detection fails or mediapipe is unavailable.
"""
if not HAS_MEDIAPIPE:
return None
height, width = image_rgb.shape[:2]
try:
with mp.solutions.face_detection.FaceDetection(model_selection=1, min_detection_confidence=0.5) as detector:
results = detector.process(image_rgb)
detections = results.detections or []
if not detections:
return None
# Pick the largest bbox
def bbox_area(det):
bbox = det.location_data.relative_bounding_box
return max(0.0, bbox.width) * max(0.0, bbox.height)
best = max(detections, key=bbox_area)
rb = best.location_data.relative_bounding_box
x1 = int(np.clip(rb.xmin * width, 0, width - 1))
y1 = int(np.clip(rb.ymin * height, 0, height - 1))
x2 = int(np.clip((rb.xmin + rb.width) * width, 0, width))
y2 = int(np.clip((rb.ymin + rb.height) * height, 0, height))
# Expand a bit to include cheeks/forehead
pad_x = int(0.08 * width)
pad_y = int(0.12 * height)
x1 = int(np.clip(x1 - pad_x, 0, width - 1))
y1 = int(np.clip(y1 - pad_y, 0, height - 1))
x2 = int(np.clip(x2 + pad_x, 0, width))
y2 = int(np.clip(y2 + pad_y, 0, height))
if x2 - x1 < 10 or y2 - y1 < 10:
return None
return x1, y1, x2, y2
except Exception:
return None
def _binary_open_close(mask: np.ndarray, kernel_size: int = 5, iterations: int = 1) -> np.ndarray:
"""Apply morphological open then close to clean the binary mask."""
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
opened = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=iterations)
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel, iterations=iterations)
return closed
def _skin_mask_ycrcb(image_rgb: np.ndarray) -> np.ndarray:
"""Skin detection using YCrCb thresholding.
Returns a binary mask (uint8 0/255) where 255 denotes skin-like pixels.
Thresholds are chosen to be reasonably inclusive for diverse skin tones.
"""
image_ycrcb = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2YCrCb)
Y, Cr, Cb = cv2.split(image_ycrcb)
# Typical skin ranges in YCrCb space
cr_min, cr_max = 133, 180
cb_min, cb_max = 77, 140
mask_cr = cv2.inRange(Cr, cr_min, cr_max)
mask_cb = cv2.inRange(Cb, cb_min, cb_max)
mask = cv2.bitwise_and(mask_cr, mask_cb)
mask = _binary_open_close(mask, kernel_size=5, iterations=1)
mask = cv2.GaussianBlur(mask, (5, 5), 0)
_, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return mask
def _skin_mask_hsv(image_rgb: np.ndarray) -> np.ndarray:
"""Auxiliary HSV-based skin detection mask."""
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV)
H, S, V = cv2.split(image_hsv)
# Skin hues tend to be in the lower range; saturation moderate; value reasonably bright
h_min, h_max = 0, 50
s_min, s_max = int(0.20 * 255), int(0.80 * 255)
v_min = int(0.20 * 255)
mask_h = cv2.inRange(H, h_min, h_max)
mask_s = cv2.inRange(S, s_min, s_max)
mask_v = cv2.inRange(V, v_min, 255)
mask = cv2.bitwise_and(cv2.bitwise_and(mask_h, mask_s), mask_v)
mask = _binary_open_close(mask, kernel_size=5, iterations=1)
return mask
def _combine_masks(mask1: np.ndarray, mask2: np.ndarray) -> np.ndarray:
if mask1 is None:
return mask2
if mask2 is None:
return mask1
combined = cv2.bitwise_and(mask1, mask2)
return combined
def _compute_skin_color_hex(image_rgb: np.ndarray, mask: np.ndarray) -> Tuple[str, np.ndarray]:
"""Compute a robust representative skin color as a hex string and return also the RGB color.
Uses median across masked pixels to reduce influence of highlights/shadows.
"""
if mask is None or mask.size == 0:
raise ValueError("Invalid mask for skin color computation")
# boolean mask for indexing
mask_bool = mask.astype(bool)
if not np.any(mask_bool):
raise ValueError("No skin pixels detected")
skin_pixels = image_rgb[mask_bool]
# Robust median to mitigate outliers
median_color = np.median(skin_pixels, axis=0)
median_color = np.clip(median_color, 0, 255).astype(np.uint8)
r, g, b = int(median_color[0]), int(median_color[1]), int(median_color[2])
hex_code = f"#{r:02X}{g:02X}{b:02X}"
return hex_code, median_color
def _solid_color_image(color_rgb: np.ndarray, size: Tuple[int, int] = (160, 160)) -> np.ndarray:
swatch = np.zeros((size[1], size[0], 3), dtype=np.uint8)
swatch[:, :] = color_rgb
return swatch
def detect_skin_tone(image: np.ndarray, center_focus: bool = True, use_face_detector: bool = False) -> Tuple[str, np.ndarray, np.ndarray]:
"""Main pipeline: returns (hex_code, color_swatch_image, debug_mask_overlay).
- image: input image as numpy array (H, W, 3) RGB uint8
- center_focus: if True, prioritizes central crop region to avoid background/hands
"""
rgb = _ensure_rgb_uint8(image)
height, width = rgb.shape[:2]
# Optionally restrict to detected face, else center crop, else full image
face_bbox: Optional[Tuple[int, int, int, int]] = None
if use_face_detector:
face_bbox = _detect_face_bbox_mediapipe(rgb)
if face_bbox is not None:
x1, y1, x2, y2 = face_bbox
central_rgb = rgb[y1:y2, x1:x2]
elif center_focus:
x1, y1, x2, y2 = _central_crop_bbox(width, height, frac=0.7)
central_rgb = rgb[y1:y2, x1:x2]
else:
x1, y1, x2, y2 = 0, 0, width, height
central_rgb = rgb
mask_ycrcb = _skin_mask_ycrcb(central_rgb)
mask_hsv = _skin_mask_hsv(central_rgb)
combined_mask = _combine_masks(mask_ycrcb, mask_hsv)
# If too few pixels, relax to YCrCb only
if np.count_nonzero(combined_mask) < 100:
combined_mask = mask_ycrcb
# If still too few, fallback to a small central patch without masking
if np.count_nonzero(combined_mask) < 100:
patch_frac = 0.2
px1, py1, px2, py2 = _central_crop_bbox(central_rgb.shape[1], central_rgb.shape[0], frac=patch_frac)
patch = central_rgb[py1:py2, px1:px2]
median_color = np.median(patch.reshape(-1, 3), axis=0).astype(np.uint8)
r, g, b = int(median_color[0]), int(median_color[1]), int(median_color[2])
hex_code = f"#{r:02X}{g:02X}{b:02X}"
# Build outputs
swatch = _solid_color_image(median_color)
# Debug overlay: show the central patch
debug_overlay = rgb.copy()
cv2.rectangle(debug_overlay, (x1 + px1, y1 + py1), (x1 + px2, y1 + py2), (255, 0, 0), 2)
return hex_code, swatch, debug_overlay
# Compute color from masked central region
hex_code, color_rgb = _compute_skin_color_hex(central_rgb, combined_mask)
# Prepare swatch and debug visualization
swatch = _solid_color_image(color_rgb)
# Place mask back into full image coordinates for visualization
full_mask = np.zeros((height, width), dtype=np.uint8)
full_mask[y1:y2, x1:x2] = combined_mask
color_mask = cv2.cvtColor(full_mask, cv2.COLOR_GRAY2RGB)
overlay = cv2.addWeighted(rgb, 0.8, color_mask, 0.2, 0)
return hex_code, swatch, overlay
def _hex_html(hex_code: str) -> str:
style = (
"display:flex;align-items:center;gap:12px;padding:8px 0;"
)
swatch_style = (
f"width:20px;height:20px;border-radius:4px;background:{hex_code};"
"border:1px solid #ccc;"
)
return (
f"<div style='{style}'>"
f"<div style='{swatch_style}'></div>"
f"<span style='font-family:monospace;font-size:16px'>{hex_code}</span>"
"</div>"
)
with gr.Blocks(title="Skin Tone Detector") as demo:
gr.Markdown(
"""
### Skin Tone Hex Detector
Upload a face image. The app estimates a representative skin tone and returns a HEX color.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Upload face image",
type="numpy",
image_mode="RGB",
height=360,
)
center_focus = gr.Checkbox(value=True, label="Center focus (ignore edges)")
use_face_det = gr.Checkbox(value=True if HAS_MEDIAPIPE else False, label="Use face detection (MediaPipe)")
run_btn = gr.Button("Detect Skin Tone", variant="primary")
with gr.Column():
hex_output = gr.HTML(label="HEX Color")
swatch_output = gr.Image(label="Color Swatch", type="numpy")
debug_output = gr.Image(label="Mask Overlay", type="numpy")
if not HAS_MEDIAPIPE:
gr.Markdown("MediaPipe not installed or unavailable. Face detection toggle will be ignored.")
def _run(image: Optional[np.ndarray], center_focus: bool, use_face_det_flag: bool):
if image is None:
return _hex_html("#000000"), np.zeros((160, 160, 3), dtype=np.uint8), None
hex_code, swatch, debug = detect_skin_tone(
image,
center_focus=center_focus,
use_face_detector=(use_face_det_flag and HAS_MEDIAPIPE),
)
return _hex_html(hex_code), swatch, debug
run_btn.click(_run, inputs=[input_image, center_focus, use_face_det], outputs=[hex_output, swatch_output, debug_output])
input_image.change(_run, inputs=[input_image, center_focus, use_face_det], outputs=[hex_output, swatch_output, debug_output])
if __name__ == "__main__":
demo.launch()
|