#!/usr/bin/env python3 """ Startup Fix Script for Dressify Handles dataset preparation issues and ensures system startup """ import os import sys import subprocess import time from pathlib import Path def check_dataset_status(): """Check the current dataset status.""" print("๐Ÿ” Checking dataset status...") root = os.path.abspath(os.path.join(os.getcwd(), "data", "Polyvore")) if not os.path.exists(root): print(f"โŒ Dataset directory not found: {root}") return False # Check key components images_dir = os.path.join(root, "images") splits_dir = os.path.join(root, "splits") has_images = os.path.isdir(images_dir) and any(Path(images_dir).glob("*")) has_splits = os.path.isdir(splits_dir) and any(Path(splits_dir).glob("*.json")) print(f"๐Ÿ“ Dataset root: {root}") print(f"๐Ÿ–ผ๏ธ Images: {'โœ…' if has_images else 'โŒ'} ({images_dir})") print(f"๐Ÿ“Š Splits: {'โœ…' if has_splits else 'โŒ'} ({splits_dir})") # Check for official splits official_splits = [] for location in ["nondisjoint", "disjoint"]: location_path = os.path.join(root, location) if os.path.exists(location_path): for split in ["train", "valid", "test"]: split_file = os.path.join(location_path, f"{split}.json") if os.path.exists(split_file): size_mb = os.path.getsize(split_file) / (1024 * 1024) official_splits.append(f"{location}/{split}.json ({size_mb:.1f} MB)") if official_splits: print(f"๐ŸŽฏ Official splits found:") for split in official_splits: print(f" โœ… {split}") if has_images and has_splits: print("โœ… Dataset is ready!") return True elif has_images: print("โš ๏ธ Images present but splits missing - will create splits from official data") return "needs_splits" else: print("โŒ Dataset incomplete - needs full preparation") return False def prepare_dataset(): """Prepare the dataset using the improved scripts.""" print("\n๐Ÿš€ Preparing dataset...") root = os.path.abspath(os.path.join(os.getcwd(), "data", "Polyvore")) # First, ensure the data fetcher runs try: print("๐Ÿ“ฅ Running data fetcher...") from utils.data_fetch import ensure_dataset_ready dataset_root = ensure_dataset_ready() if not dataset_root: print("โŒ Data fetcher failed") return False print(f"โœ… Data fetcher completed: {dataset_root}") except Exception as e: print(f"โŒ Data fetcher error: {e}") return False # Now run the dataset preparation script (without random splits) try: print("๐Ÿ”ง Running dataset preparation...") # Check if prepare_polyvore.py exists prep_script = "scripts/prepare_polyvore.py" if not os.path.exists(prep_script): prep_script = "prepare_polyvore.py" if not os.path.exists(prep_script): print(f"โŒ Prepare script not found: {prep_script}") return False # Run the preparation script WITHOUT random splits cmd = [ sys.executable, prep_script, "--root", root # Note: NOT using --force_random_split ] print(f"๐Ÿ”ง Running: {' '.join(cmd)}") print("๐ŸŽฏ This will use official splits from nondisjoint/ and disjoint/ folders") result = subprocess.run(cmd, capture_output=True, text=True, check=False) if result.returncode == 0: print("โœ… Dataset preparation completed successfully!") print("๐Ÿ“ Output:") print(result.stdout) return True else: print("โŒ Dataset preparation failed!") print("๐Ÿ“ Error output:") print(result.stderr) print("๐Ÿ“ Standard output:") print(result.stdout) # Check if it's because official splits are missing if "No official splits found" in result.stderr or "No official splits found" in result.stdout: print("\n๐Ÿ”ง Issue: Official splits not found in nondisjoint/ or disjoint/ folders") print("๐Ÿ“ Expected structure:") print(" data/Polyvore/") print(" โ”œโ”€โ”€ nondisjoint/") print(" โ”‚ โ”œโ”€โ”€ train.json") print(" โ”‚ โ”œโ”€โ”€ valid.json") print(" โ”‚ โ””โ”€โ”€ test.json") print(" โ”œโ”€โ”€ disjoint/") print(" โ”‚ โ”œโ”€โ”€ train.json") print(" โ”‚ โ”œโ”€โ”€ valid.json") print(" โ”‚ โ””โ”€โ”€ test.json") print(" โ””โ”€โ”€ images/") print("\n๐Ÿ’ก Solution: The dataset should have been downloaded with official splits.") print(" Check if the Hugging Face download completed successfully.") return False except Exception as e: print(f"โŒ Dataset preparation error: {e}") return False def verify_splits(): """Verify that splits were created successfully.""" print("\n๐Ÿ” Verifying splits...") root = os.path.abspath(os.path.join(os.getcwd(), "data", "Polyvore")) splits_dir = os.path.join(root, "splits") if not os.path.exists(splits_dir): print("โŒ Splits directory not found") return False required_files = [ "train.json", "outfits_train.json", "outfit_triplets_train.json" ] missing_files = [] for file_name in required_files: file_path = os.path.join(splits_dir, file_name) if os.path.exists(file_path): size_mb = os.path.getsize(file_path) / (1024 * 1024) print(f"โœ… {file_name}: {size_mb:.1f} MB") else: print(f"โŒ {file_name}: Missing") missing_files.append(file_name) if missing_files: print(f"โŒ Missing required files: {missing_files}") return False print("โœ… All required splits verified!") return True def test_training_scripts(): """Test that training scripts can run without errors.""" print("\n๐Ÿงช Testing training scripts...") # Test ResNet training script try: print("๐Ÿ”ง Testing ResNet training script...") from models.resnet_embedder import ResNetItemEmbedder print("โœ… ResNet model imports successfully") except Exception as e: print(f"โŒ ResNet model import failed: {e}") return False # Test ViT training script try: print("๐Ÿ”ง Testing ViT training script...") from models.vit_outfit import OutfitCompatibilityModel print("โœ… ViT model imports successfully") except Exception as e: print(f"โŒ ViT model import failed: {e}") return False print("โœ… All training scripts tested successfully!") return True def create_quick_start_script(): """Create a quick start script for easy testing.""" script_content = """#!/bin/bash # Quick Start Script for Dressify # This script will prepare the dataset and start training echo "๐Ÿš€ Dressify Quick Start" echo "========================" # Check if dataset is ready if [ -d "data/Polyvore/splits" ] && [ -f "data/Polyvore/splits/train.json" ]; then echo "โœ… Dataset is ready!" else echo "๐Ÿ”ง Preparing dataset..." python startup_fix.py fi # Start quick training echo "๐ŸŽฏ Starting quick training..." python train_resnet.py --data_root data/Polyvore --epochs 3 --out models/exports/resnet_quick.pth echo "๐ŸŽ‰ Quick start completed!" echo "๐Ÿ“ Check models/exports/ for trained models" """ script_path = "quick_start.sh" with open(script_path, "w") as f: f.write(script_content) # Make executable os.chmod(script_path, 0o755) print(f"๐Ÿ“ Created quick start script: {script_path}") def main(): """Main startup fix routine.""" print("๐Ÿš€ Dressify Startup Fix") print("=" * 50) # Check current status status = check_dataset_status() if status is True: print("โœ… System is ready to go!") return True elif status == "needs_splits": print("๐Ÿ”ง Dataset needs splits created from official data...") if prepare_dataset(): if verify_splits(): print("โœ… Dataset preparation completed successfully!") return True else: print("โŒ Split verification failed") return False else: print("โŒ Dataset preparation failed") return False else: print("๐Ÿ”ง Dataset needs full preparation...") if prepare_dataset(): if verify_splits(): print("โœ… Dataset preparation completed successfully!") return True else: print("โŒ Split verification failed") return False else: print("โŒ Dataset preparation failed") return False if __name__ == "__main__": try: success = main() if success: print("\n๐ŸŽ‰ Startup fix completed successfully!") print("๐Ÿš€ Your Dressify system is ready to use!") # Create quick start script create_quick_start_script() print("\n๐Ÿ“‹ Next steps:") print("1. Run: python app.py") print("2. Or use: ./quick_start.sh") print("3. Check the Advanced Training tab for parameter controls") else: print("\nโŒ Startup fix failed!") print("๐Ÿ”ง Please check the error messages above") print("๐Ÿ“ž Contact support if issues persist") except KeyboardInterrupt: print("\nโน๏ธ Startup fix interrupted by user") except Exception as e: print(f"\n๐Ÿ’ฅ Unexpected error: {e}") import traceback traceback.print_exc()