File size: 55,974 Bytes
ab4cf94
 
6dd859c
 
80b040e
 
 
ab4cf94
527fcc4
80b040e
cbf9ae2
ab4cf94
cbf9ae2
cc795e5
cbf9ae2
5add6fe
ab4cf94
80b040e
6dd859c
 
5add6fe
cbf9ae2
5add6fe
cbf9ae2
 
5add6fe
cbf9ae2
 
 
 
 
80b040e
 
5add6fe
cbf9ae2
 
 
 
 
 
 
 
 
 
ab4cf94
80b040e
 
cbf9ae2
5add6fe
cbf9ae2
 
 
 
5add6fe
cbf9ae2
 
 
 
 
 
 
 
 
ab4cf94
 
 
cbf9ae2
 
6dd859c
 
80b040e
cbf9ae2
 
6dd859c
 
 
 
cbf9ae2
6dd859c
 
 
 
 
 
 
 
 
cbf9ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
cbf9ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5add6fe
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd859c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b040e
6dd859c
 
 
 
 
 
 
 
 
 
 
ab4cf94
6dd859c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
6dd859c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
6dd859c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
6dd859c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
6dd859c
 
 
 
 
 
 
80b040e
6dd859c
 
 
 
cbf9ae2
 
 
 
 
 
 
 
ab4cf94
cbf9ae2
 
 
 
 
 
 
ab4cf94
 
 
 
cbf9ae2
ab4cf94
cbf9ae2
 
 
 
 
 
ab4cf94
5add6fe
7a9500a
ab4cf94
 
cbf9ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
cbf9ae2
 
5add6fe
cbf9ae2
 
 
 
 
 
 
5add6fe
cbf9ae2
 
5add6fe
cbf9ae2
 
 
 
 
 
 
5add6fe
cbf9ae2
 
 
 
 
5add6fe
ab4cf94
cbf9ae2
 
 
 
6dd859c
 
 
80b040e
6dd859c
80b040e
 
 
 
5add6fe
80b040e
5add6fe
80b040e
 
 
 
 
 
 
 
 
35bcea0
80b040e
35bcea0
 
 
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527fcc4
5add6fe
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
 
80b040e
 
 
 
 
 
 
cbf9ae2
80b040e
 
 
 
7a9500a
80b040e
 
 
 
 
 
 
7a9500a
80b040e
 
 
 
 
 
 
cbf9ae2
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
80b040e
 
 
 
ab4cf94
 
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbf9ae2
80b040e
 
 
 
cbf9ae2
80b040e
 
cbf9ae2
80b040e
 
cbf9ae2
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbf9ae2
80b040e
cbf9ae2
80b040e
 
 
 
527fcc4
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4cf94
80b040e
 
 
 
 
 
ab4cf94
80b040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd859c
ab4cf94
 
80b040e
 
 
 
 
6dd859c
 
 
 
 
 
 
 
 
80b040e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
import os
# Import constants
import numpy as np
import torch
from typing import Optional, Union, List, Tuple
from PIL import Image, ImageFilter
import cv2
import utils.constants as constants
import gradio as gr

from haishoku.haishoku import Haishoku

from tempfile import NamedTemporaryFile
#from pathlib import Path
import atexit
import random
import logging
#import accelerate 
from transformers import AutoTokenizer
import gc

IS_SHARED_SPACE = constants.IS_SHARED_SPACE

# Import functions from modules
from utils.file_utils import cleanup_temp_files

from utils.color_utils import (
    hex_to_rgb,
    detect_color_format,
    update_color_opacity,
)
from utils.misc import (get_filename, pause, convert_ratio_to_dimensions) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env)
#from utils.depth_estimation import generate_depth_button_click

from utils.image_utils import (
    change_color,
    open_image,
    build_prerendered_images,
    upscale_image,
    lerp_imagemath,
    shrink_and_paste_on_blank,
    show_lut,
    apply_lut_to_image_path,
    multiply_and_blend_images,
    alpha_composite_with_control,
    crop_and_resize_image,
    convert_to_rgba_png
)

from utils.hex_grid import (
    generate_hexagon_grid,
    generate_hexagon_grid_interface,
)

from utils.excluded_colors import (
    add_color,
    delete_color,
    build_dataframe,
    on_input,
    excluded_color_list,
    on_color_display_select
)

# from utils.ai_generator import (
#     generate_ai_image,
# )
from utils.version_info import (
    versions_html,
    #initialize_cuda,
    #release_torch_resources,
    #get_torch_info
)
from utils.lora_details import (
    upd_prompt_notes,
    split_prompt_precisely,
    approximate_token_count,
    get_trigger_words
)
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline

PIPELINE_CLASSES = {
    "FluxPipeline": FluxPipeline,
    "FluxImg2ImgPipeline": FluxImg2ImgPipeline,
    "FluxControlPipeline": FluxControlPipeline
}

import spaces

input_image_palette = []
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")

# Register the cleanup function
atexit.register(cleanup_temp_files)

def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None):
    global input_image_palette

    try:
        # Load and process the input image
        input_image = Image.open(input_image_path).convert("RGBA")
    except Exception as e:
        print(f"Failed to convert image to RGBA: {e}")
        # Open the original image without conversion
        input_image = Image.open(input_image_path)
        # Ensure the canvas is at least 1344x768 pixels
        min_width, min_height = 1344, 768
        canvas_width = max(min_width, input_image.width)
        canvas_height = max(min_height, input_image.height)

        # Create a transparent canvas with the required dimensions
        new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0))

        # Calculate position to center the input image on the canvas
        paste_x = (canvas_width - input_image.width) // 2
        paste_y = (canvas_height - input_image.height) // 2

        # Paste the input image onto the canvas
        new_canvas.paste(input_image, (paste_x, paste_y))

        # Save the 'RGBA' image to a temporary file and update 'input_image_path'
        with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
            new_canvas.save(tmp_file.name, format="PNG")
            input_image_path = tmp_file.name
            constants.temp_files.append(tmp_file.name)

        # Update 'input_image' with the new image as a file path
        input_image = Image.open(input_image_path)
    
    # Use Haishoku to get the palette from the new image
    input_palette = Haishoku.loadHaishoku(input_image_path)
    input_image_palette = input_palette.palette

    # Update colors with opacity
    background_color = update_color_opacity(
        hex_to_rgb(background_color_hex),
        int(background_opacity * (255 / 100))
    )
    border_color = update_color_opacity(
        hex_to_rgb(border_color_hex),
        int(border_opacity * (255 / 100))
    )

    # Prepare excluded colors list
    excluded_color_list = [tuple(lst) for lst in excluded_colors_var]

    # Generate the hexagon grid images
    grid_image = generate_hexagon_grid_interface(
        hex_size,
        border_size,
        input_image,
        start_x,
        start_y,
        end_x,
        end_y,
        rotation,
        background_color,
        border_color,
        fill_hex,
        excluded_color_list,
        filter_color,
        x_spacing,
        y_spacing,
        add_hex_text_option,
        custom_text_list,
        custom_text_color_list
    )    
    return grid_image

def get_model_and_lora(model_textbox):
    """
    Determines the model and LoRA weights based on the model_textbox input.
    wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"]
    """
    # If the input is in the list of models, return it with None as LoRA weights
    if model_textbox in constants.MODELS:
        return model_textbox, []
    # If the input is in the list of LoRA weights, get the corresponding model
    elif model_textbox in constants.LORA_WEIGHTS:
        model = constants.LORA_TO_MODEL.get(model_textbox)
        return model, model_textbox.split()
    else:
        # Default to a known model if input is unrecognized
        default_model = model_textbox
        return default_model, []

condition_dict = {
    "depth": 0,
    "canny": 1,
    "subject": 4,
    "coloring": 6,
    "deblurring": 7,
    "fill": 9,
}

class Condition(object):
    def __init__(
        self,
        condition_type: str,
        raw_img: Union[Image.Image, torch.Tensor] = None,
        condition: Union[Image.Image,torch.Tensor] = None,
        mask=None,
    ) -> None:
        self.condition_type = condition_type
        assert raw_img is not None or condition is not None
        if raw_img is not None:
            self.condition = self.get_condition(condition_type, raw_img)
        else:
            self.condition = condition
        # TODO: Add mask support
        assert mask is None, "Mask not supported yet"
    def get_condition(
        self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
    ) -> Union[Image.Image, torch.Tensor]:
        """
        Returns the condition image.
        """
        if condition_type == "depth":
            from transformers import pipeline
            depth_pipe = pipeline(
                task="depth-estimation",
                model="LiheYoung/depth-anything-small-hf",
                device="cuda",
            )
            source_image = raw_img.convert("RGB")
            condition_img = depth_pipe(source_image)["depth"].convert("RGB")
            return condition_img
        elif condition_type == "canny":
            img = np.array(raw_img)
            edges = cv2.Canny(img, 100, 200)
            edges = Image.fromarray(edges).convert("RGB")
            return edges
        elif condition_type == "subject":
            return raw_img
        elif condition_type == "coloring":
            return raw_img.convert("L").convert("RGB")
        elif condition_type == "deblurring":
            condition_image = (
                raw_img.convert("RGB")
                .filter(ImageFilter.GaussianBlur(10))
                .convert("RGB")
            )
            return condition_image
        elif condition_type == "fill":
            return raw_img.convert("RGB")
        return self.condition
    @property
    def type_id(self) -> int:
        """
        Returns the type id of the condition.
        """
        return condition_dict[self.condition_type]
    @classmethod
    def get_type_id(cls, condition_type: str) -> int:
        """
        Returns the type id of the condition.
        """
        return condition_dict[condition_type]
    def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
        """
        Encodes an image condition into tokens using the pipeline.
        """
        cond_img = pipe.image_processor.preprocess(cond_img)
        cond_img = cond_img.to(pipe.device).to(pipe.dtype)
        cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
        cond_img = (
            cond_img - pipe.vae.config.shift_factor
        ) * pipe.vae.config.scaling_factor
        cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
        cond_ids = pipe._prepare_latent_image_ids(
            cond_img.shape[0],
            cond_img.shape[2]//2,
            cond_img.shape[3]//2,
            pipe.device,
            pipe.dtype,
        )
        return cond_tokens, cond_ids
    def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
        """
        Encodes the condition into tokens, ids and type_id.
        """
        if self.condition_type in [
            "depth",
            "canny",
            "subject",
            "coloring",
            "deblurring",
            "fill",
        ]:
            tokens, ids = self._encode_image(pipe, self.condition)
        else:
            raise NotImplementedError(
                f"Condition type {self.condition_type} not implemented"
            )
        type_id = torch.ones_like(ids[:, :1]) * self.type_id
        return tokens, ids, type_id

@spaces.GPU(progress=gr.Progress(track_tqdm=True))
def generate_image_lowmem(
    text,
    neg_prompt=None,
    model_name="black-forest-labs/FLUX.1-dev",
    lora_weights=None,
    conditioned_image=None,
    image_width=1368,
    image_height=848,
    guidance_scale=3.5,
    num_inference_steps=30,
    seed=0,
    true_cfg_scale=1.0,
    pipeline_name="FluxPipeline",
    strength=0.75,
    additional_parameters=None,
    progress=gr.Progress(track_tqdm=True)
):  
    #from torch import cuda, bfloat16, float32, Generator, no_grad, backends
    # Retrieve the pipeline class from the mapping
    pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
    if not pipeline_class:
        raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
                        f"Available options: {list(PIPELINE_CLASSES.keys())}")

    #initialize_cuda()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    #from src.condition import Condition

    print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
    #print(f"\n {get_torch_info()}\n")
    # Disable gradient calculations
    with torch.no_grad():
        # Initialize the pipeline inside the context manager
        pipe = pipeline_class.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
        ).to(device)
        # Optionally, don't use CPU offload if not necessary
        
        # alternative version that may be more efficient
        # pipe.enable_sequential_cpu_offload()
        if pipeline_name == "FluxPipeline":
            pipe.enable_model_cpu_offload()
            pipe.vae.enable_slicing()
            pipe.vae.enable_tiling()
        else:
            pipe.enable_model_cpu_offload()

        # Access the tokenizer from the pipeline
        tokenizer = pipe.tokenizer

        # Check if add_prefix_space is set and convert to slow tokenizer if necessary
        if getattr(tokenizer, 'add_prefix_space', False):
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu')
            # Update the pipeline's tokenizer
            pipe.tokenizer = tokenizer
            pipe.to(device)

        flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
        if flash_attention_enabled == False:
            #Enable xFormers memory-efficient attention (optional)
            #pipe.enable_xformers_memory_efficient_attention()
            print("\nEnabled xFormers memory-efficient attention.\n")
        else:            
            pipe.attn_implementation="flash_attention_2"
            print("\nEnabled flash_attention_2.\n")

        condition_type = "subject"
        # Load LoRA weights
        # note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])        
        if lora_weights:
            for lora_weight in lora_weights:
                lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
                lora_weight_set = False
                if lora_configs:
                    for config in lora_configs:
                        # Load LoRA weights with optional weight_name and adapter_name
                        if 'weight_name' in config:
                            weight_name = config.get("weight_name")
                            adapter_name = config.get("adapter_name")
                            lora_collection = config.get("lora_collection")
                            if weight_name and adapter_name and lora_collection and lora_weight_set == False:
                                pipe.load_lora_weights(
                                    lora_collection,
                                    weight_name=weight_name,
                                    adapter_name=adapter_name,
                                    token=constants.HF_API_TOKEN
                                )
                                lora_weight_set = True
                                print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")  
                            elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
                                pipe.load_lora_weights(
                                    lora_collection,
                                    weight_name=weight_name,
                                    token=constants.HF_API_TOKEN
                                )
                                lora_weight_set = True
                                print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")  
                            elif weight_name and adapter_name and lora_weight_set == False:
                                pipe.load_lora_weights(
                                    lora_weight,
                                    weight_name=weight_name,
                                    adapter_name=adapter_name,
                                    token=constants.HF_API_TOKEN
                                )
                                lora_weight_set = True
                                print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")  
                            elif weight_name and adapter_name==None and lora_weight_set == False:
                                pipe.load_lora_weights(
                                    lora_weight,
                                    weight_name=weight_name,
                                    token=constants.HF_API_TOKEN
                                )
                                lora_weight_set = True
                                print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")  
                            elif lora_weight_set == False:
                                pipe.load_lora_weights(
                                    lora_weight,
                                    token=constants.HF_API_TOKEN
                                )  
                                lora_weight_set = True
                                print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")  
                        # Apply 'pipe' configurations if present
                        if 'pipe' in config:
                            pipe_config = config['pipe']
                            for method_name, params in pipe_config.items():
                                method = getattr(pipe, method_name, None)
                                if method:
                                    print(f"Applying pipe method: {method_name} with params: {params}")
                                    method(**params)
                                else:
                                    print(f"Method {method_name} not found in pipe.")
                        if 'condition_type' in config:
                            condition_type = config['condition_type']
                            if condition_type == "coloring":
                                #pipe.enable_coloring()
                                print("\nEnabled coloring.\n")
                            elif condition_type == "deblurring":
                                #pipe.enable_deblurring()
                                print("\nEnabled deblurring.\n")
                            elif condition_type == "fill":
                                #pipe.enable_fill()
                                print("\nEnabled fill.\n")
                            elif condition_type == "depth":
                                #pipe.enable_depth()
                                print("\nEnabled depth.\n")
                            elif condition_type == "canny":
                                #pipe.enable_canny()
                                print("\nEnabled canny.\n")
                            elif condition_type == "subject":
                                #pipe.enable_subject()
                                print("\nEnabled subject.\n")
                            else:
                                print(f"Condition type {condition_type} not implemented.")
                else:
                    pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
        # Set the random seed for reproducibility
        generator = torch.Generator(device=device).manual_seed(seed)
        conditions = []
        if conditioned_image is not None:
            conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height)
            condition = Condition(condition_type, conditioned_image)
            conditions.append(condition)
            print(f"\nAdded conditioned image.\n {conditioned_image.size}")
            # Prepare the parameters for image generation
            additional_parameters ={
                "strength": strength,
                "image": conditioned_image,
            }
        else:
            print("\nNo conditioned image provided.")
            if neg_prompt!=None:
                true_cfg_scale=1.1
            additional_parameters ={
                "negative_prompt": neg_prompt,
                "true_cfg_scale": true_cfg_scale,
            }
        # handle long prompts by splitting them
        if approximate_token_count(text) > 76:
            prompt, prompt2 = split_prompt_precisely(text)
            prompt_parameters = {
                "prompt" : prompt,
                "prompt_2": prompt2
            }
        else:
            prompt_parameters = {
                "prompt" :text
        }
        additional_parameters.update(prompt_parameters)
        # Combine all parameters
        generate_params = {
            "height": image_height,
            "width": image_width,
            "guidance_scale": guidance_scale,
            "num_inference_steps": num_inference_steps,
            "generator": generator,        }
        if additional_parameters:
            generate_params.update(additional_parameters)
        generate_params = {k: v for k, v in generate_params.items() if v is not None}
        print(f"generate_params: {generate_params}")
        # Generate the image
        result = pipe(**generate_params)
        image = result.images[0]
        # Clean up
        del result
        del conditions
        del generator
    # Delete the pipeline and clear cache
    del pipe
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    print(torch.cuda.memory_summary(device=None, abbreviated=False))
    
    return image

def generate_ai_image_local (
    map_option,
    prompt_textbox_value,
    neg_prompt_textbox_value,
    model="black-forest-labs/FLUX.1-dev",
    lora_weights=None,
    conditioned_image=None,
    height=512,
    width=912,
    num_inference_steps=30,
    guidance_scale=3.5,
    seed=777,
    pipeline_name="FluxPipeline",
    strength=0.75,
    progress=gr.Progress(track_tqdm=True)
):        
    print(f"Generating image with lowmem")
    try:
        if map_option != "Prompt":
            prompt = constants.PROMPTS[map_option]
            negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
        else:
            prompt = prompt_textbox_value
            negative_prompt = neg_prompt_textbox_value or ""
        #full_prompt = f"{prompt} {negative_prompt}"
        additional_parameters = {}
        if lora_weights:
            for lora_weight in lora_weights:
                lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
                for config in lora_configs:
                    if 'parameters' in config:
                        additional_parameters.update(config['parameters'])
                    elif 'trigger_words' in config:
                        trigger_words = get_trigger_words(lora_weight)
                        prompt = f"{trigger_words} {prompt}"
        for key, value in additional_parameters.items():
            if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
                additional_parameters[key] = int(value)
            elif key in ['guidance_scale','true_cfg_scale']:
                additional_parameters[key] = float(value)
        height = additional_parameters.pop('height', height)
        width = additional_parameters.pop('width', width)
        num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
        guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
        print("Generating image with the following parameters:")
        print(f"Model: {model}")
        print(f"LoRA Weights: {lora_weights}")
        print(f"Prompt: {prompt}")
        print(f"Neg Prompt: {negative_prompt}")
        print(f"Height: {height}")
        print(f"Width: {width}")
        print(f"Number of Inference Steps: {num_inference_steps}")
        print(f"Guidance Scale: {guidance_scale}")
        print(f"Seed: {seed}")
        print(f"Additional Parameters: {additional_parameters}")
        print(f"Conditioned Image: {conditioned_image}")
        print(f"Conditioned Image Strength: {strength}")
        print(f"pipeline: {pipeline_name}")
        image = generate_image_lowmem(
            text=prompt,
            model_name=model,
            neg_prompt=negative_prompt,
            lora_weights=lora_weights,
            conditioned_image=conditioned_image,
            image_width=width,
            image_height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            seed=seed,
            pipeline_name=pipeline_name,
            strength=strength,
            additional_parameters=additional_parameters
        )
        with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            image.save(tmp.name, format="PNG")
            constants.temp_files.append(tmp.name)
            print(f"Image saved to {tmp.name}")
            #release_torch_resources()
            gc.collect()
            return tmp.name
    except Exception as e:
        print(f"Error generating AI image: {e}")
        #release_torch_resources()
        gc.collect()
        return None

@spaces.GPU(duration=140)
def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, constants.MAX_SEED)

    # Get the model and LoRA weights
    model, lora_weights = get_model_and_lora(model_textbox_value)
    global current_prerendered_image
    conditioned_image=None

    if use_conditioned_image:
        print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
        # ensure the conditioned image is an image and not a string, cannot use RGBA
        if isinstance(current_prerendered_image.value, str):
            conditioned_image = open_image(current_prerendered_image.value).convert("RGB")
            print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n")

    # Convert image_format from a string split by ":" into two numbers divided
    width_ratio, height_ratio = map(int, image_format.split(":"))
    aspect_ratio = width_ratio / height_ratio
    
    width, height = convert_ratio_to_dimensions(aspect_ratio, 576)
    pipeline = "FluxPipeline"
    if conditioned_image is not None:
        pipeline = "FluxImg2ImgPipeline"
    # Generate the AI image and get the image path
    image_path = generate_ai_image_local(
        map_option,
        prompt_textbox_value,
        negative_prompt_textbox_value,
        model,
        lora_weights,
        conditioned_image,
        strength=strength,
        height=height,
        width=width,
        seed=seed,
        pipeline_name=pipeline,
    )
       
    # Open the generated image
    try:
        image = Image.open(image_path).convert("RGBA")
    except Exception as e:
        print(f"Failed to open generated image: {e}")
        return image_path  # Return the original image path if opening fails
       
    # Upscale the image
    upscaled_image = upscale_image(image, scale_factor)
       
    # Save the upscaled image to a temporary file
    with NamedTemporaryFile(delete=False, suffix=".png") as tmp_upscaled:
        upscaled_image.save(tmp_upscaled.name, format="PNG")
        constants.temp_files.append(tmp_upscaled.name)
        print(f"Upscaled image saved to {tmp_upscaled.name}")
    
    # Return the path of the upscaled image
    return tmp_upscaled.name

def update_prompt_visibility(map_option):
      is_visible = (map_option == "Prompt")
      return (
          gr.update(visible=is_visible),
          gr.update(visible=is_visible),
          gr.update(visible=is_visible)
      )

def update_prompt_notes(model_textbox_value):
    return upd_prompt_notes(model_textbox_value)

def on_prerendered_gallery_selection(event_data: gr.SelectData):
    global current_prerendered_image
    selected_index = event_data.index
    selected_image = constants.pre_rendered_maps_paths[selected_index]
    print(f"Gallery Image Selected: {selected_image}\n")
    current_prerendered_image.value = selected_image
    return current_prerendered_image

def combine_images_with_lerp(input_image, output_image, alpha):
    in_image = open_image(input_image)
    out_image = open_image(output_image)
    print(f"Combining images with alpha: {alpha}")
    return lerp_imagemath(in_image, out_image, alpha)

def add_border(image, mask_width, mask_height, blank_color):    
    bordered_image_output = Image.open(image).convert("RGBA")
    margin_color = detect_color_format(blank_color)
    print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}")
    return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color)

def getVersions():
    return versions_html()

generate_input_image_click.zerogpu = True
#def main(debug=False):
title = "HexaGrid Creator"
#description = "Customizable Hexagon Grid Image Generator"
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]]

gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/"])

# Gradio Blocks Interface
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty') as hexaGrid:
    with gr.Row():
        gr.Markdown("""
        # HexaGrid Creator
        ## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro")
    with gr.Row():
        with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"):
            gr.Markdown ("""

            ## Drop an image into the Input Image and get started!

        

            ## What is HexaGrid Creator?
            HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles!

            ### What Can You Do?
            - **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters.
            - **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them.
            - **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look.
            - **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time.
            - **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization.
            - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
            - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
            - **Add Margins:** Add customizable margins around your images for a polished finish.

            ### Why You'll Love It
            - **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun!
            - **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways.
            - **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢
            - **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization.

            ### Get Started
            1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool.
            2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay.
            3. **Download and Share:** Once you're happy with your creation, download it and share it with the world!

            ### Advanced Features
            - **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images.
            - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
            - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
            - **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization.
            - **Add Margins:** Customize margins around your images for a polished finish.

            Join the hive and start creating with HexaGrid Creator today!
        
            """, elem_classes="intro")
    with gr.Row():        
        with gr.Column(scale=2):
            input_image = gr.Image(
                label="Input Image",
                type="filepath",
                interactive=True,
                elem_classes="centered solid imgcontainer",
                key="imgInput",
                image_mode=None,
                format="PNG", 
                show_download_button=True,
            )

        # New code to convert input image to RGBA PNG
        def on_input_image_change(image_path):
            if image_path is None:
                gr.Warning("Please upload an Input Image to get started.")
                return None
            img, img_path = convert_to_rgba_png(image_path)
            return img_path

        input_image.change(
            fn=on_input_image_change,
            inputs=[input_image],
            outputs=[input_image], scroll_to_output=True,
        )
        with gr.Column():
            with gr.Accordion("Hex Coloring and Exclusion", open = False):
                with gr.Row():
                    with gr.Column():
                        color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
                    with gr.Column():
                        filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
                exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
                color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
                selected_row = gr.Number(0, label="Selected Row", visible=False)
                delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
                fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
            with gr.Accordion("Image Filters", open = False):
                with gr.Row():
                    with gr.Column():
                        composite_color = gr.ColorPicker(label="Color", value="#ede9ac44")
                    with gr.Column():
                        composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True)
                with gr.Row():
                    composite_button = gr.Button("Composite", elem_classes="solid")
                with gr.Row():
                    with gr.Column():
                        lut_filename = gr.Textbox(
                            value="", 
                            label="Look Up Table (LUT) File Name",
                            elem_id="lutFileName")
                    with gr.Column():
                        lut_file = gr.File(
                            value=None,
                            file_count="single",
                            file_types=[".cube"],
                            type="filepath",
                            label="LUT cube File")
                with gr.Row():
                    lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img)
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("""
                        ### Included Filters (LUTs)
                        There are several included Filters:

                        Try them on the example image before applying to your Input Image.
                        """, elem_id="lut_markdown")
                    with gr.Column():
                        gr.Examples(elem_id="lut_examples",
                            examples=[[f] for f in constants.lut_files],
                            inputs=[lut_filename],
                            outputs=[lut_filename],
                            label="Select a Filter (LUT) file. Populate the LUT File Name field"
                        )
                    
                with gr.Row():
                    apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
                    
                lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename])
                lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image])
                apply_lut_button.click(
                    lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0], 
                    inputs=[lut_filename, input_image], 
                    outputs=[input_image], 
                    scroll_to_output=True
                )

    with gr.Row():
        with gr.Accordion("Generative AI", open = False):
            with gr.Row():
                with gr.Column():
                    model_options = gr.Dropdown(
                        label="Model Options",
                        choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"],
                        value="Cossale/Frames2-Flex.1",
                        elem_classes="solid"
                    )
                    model_textbox = gr.Textbox(
                        label="LORA/Model",
                        value="Cossale/Frames2-Flex.1",
                        elem_classes="solid",
                        elem_id="inference_model",
                        visible=False
                    )
                    # Update map_options to a Dropdown with choices from constants.PROMPTS keys
                    with gr.Row():
                        with gr.Column():
                                map_options = gr.Dropdown(
                                label="Map Options",
                                choices=list(constants.PROMPTS.keys()),
                                value="Alien Landscape",
                                elem_classes="solid",
                                scale=0
                            )
                        with gr.Column():
                            # Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
                            # The values of height and width are based on common resolutions for each aspect ratio
                            # Default to 16x9, 912x512
                            image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
                        with gr.Column():
                            seed_slider = gr.Slider(
                                label="Seed",
                                minimum=0,
                                maximum=constants.MAX_SEED,
                                step=1,
                                value=0,
                                scale=0
                            )
                            randomize_seed = gr.Checkbox(label="Randomize seed", value=True, scale=0, interactive=True)
                    prompt_textbox = gr.Textbox(
                        label="Prompt",
                        visible=False,
                        elem_classes="solid",
                        value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down",
                        lines=4
                    )
                    negative_prompt_textbox = gr.Textbox(
                        label="Negative Prompt",
                        visible=False,
                        elem_classes="solid",
                        value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text"
                    )
                    prompt_notes_label = gr.Label(
                        "You should use FRM$ as trigger words. @1.5 minutes",
                        elem_classes="solid centered small",
                        show_label=False,
                        visible=False
                    )
                    # Keep the change event to maintain functionality
                    map_options.change(
                        fn=update_prompt_visibility,
                        inputs=[map_options],
                        outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label]
                    )
                    with gr.Row():
                        generate_input_image = gr.Button(
                            "Generate AI Image",
                            elem_id="generate_input_image",
                            elem_classes="solid"
                    )
                with gr.Column(scale=2):
                        with gr.Accordion("Template Image Styles", open = False):
                            with gr.Row():
                                # Gallery from PRE_RENDERED_IMAGES GOES HERE
                                prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
                            with gr.Row():
                                image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                                with gr.Column():
                                    replace_input_image_button = gr.Button(
                                        "Replace Input Image",
                                        elem_id="prerendered_replace_input_image_button",
                                        elem_classes="solid"
                                    )
                                with gr.Column():
                                    generate_input_image_from_gallery = gr.Button(
                                        "Generate AI Image from Gallery",
                                        elem_id="generate_input_image_from_gallery",
                                        elem_classes="solid"
                                    )

    with gr.Accordion("Advanced Hexagon Settings", open = False):
        with gr.Row():
            start_x = gr.Number(label="Start X", value=0, minimum=-512, maximum= 512, precision=0)
            start_y = gr.Number(label="Start Y", value=0, minimum=-512, maximum= 512, precision=0)
            end_x = gr.Number(label="End X", value=0, minimum=-512, maximum= 512, precision=0)
            end_y = gr.Number(label="End Y", value=0, minimum=-512, maximum= 512, precision=0)
        with gr.Row():
            x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-1, minimum=-200, maximum=200, precision=1)
            y_spacing = gr.Number(label="Adjust Vertical spacing", value=1, minimum=-200, maximum=200, precision=1)
        with gr.Row():
            rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)")
            add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None)
        with gr.Row():
            custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,)
            custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False)
        with gr.Row():
            hex_text_info = gr.Markdown("""
            ### Text Color uses the Border Color and Border Opacity, unless you use a custom list.
            ### The Custom Text List and Custom Text Color List are comma separated lists.
            ### The custom color list is a comma separated list of hex colors.
            #### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
            """, elem_id="hex_text_info", visible=False)
        add_hex_text.change(
        fn=lambda x: (
            gr.update(visible=(x == "Custom List")), 
            gr.update(visible=(x == "Custom List")),
            gr.update(visible=(x != None))
            ),
            inputs=add_hex_text,
            outputs=[custom_text_list, custom_text_color_list, hex_text_info]
        )
    with gr.Row():
        hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768)
        border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size")
    with gr.Row():        
        background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True)
        background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %")
        border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True)
        border_opacity = gr.Slider(0,100,0,1,label="Border Opacity %")
    with gr.Row():
        hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate")
    with gr.Row():
        output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", show_download_button=True, show_share_button=True,elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput")
        overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay")
    with gr.Row():
        output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity")
        output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity")
        output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity")
    with gr.Accordion("Add Margins (bleed)", open=False):
        with gr.Row():
            border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image")
        with gr.Row():
            mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0)
            mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0)
        with gr.Row():
                margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True)
                margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %")
        with gr.Row():
            add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary")
        with gr.Row():
            bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", show_download_button=True, show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered")

    with gr.Accordion("Height Maps and 3D", open = False):
        with gr.Row():
            with gr.Column():
                voxel_size_factor = gr.Slider(label="Voxel Size Factor", value=1.00, minimum=0.01, maximum=40.00, step=0.01)
            with gr.Column():
                depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image")
        with gr.Row():
            generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary")
        with gr.Row():
            depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth")
            model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 0.25], key="Img3D", elem_classes="centered solid imgcontainer")
    with gr.Row():
        gr.Examples(examples=[
            ["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15],
            ["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75],
            ["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50],
            ["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5],
            ["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0],
            ],
            inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity],
            elem_id="examples")
    with gr.Row():
        gr.HTML(value=getVersions(), visible=True, elem_id="versions")
    # with gr.Row():
    #     reinstall_torch = gr.Button("Reinstall Torch", elem_classes="solid small", variant="secondary")
    #     reinstall_cuda_toolkit = gr.Button("Install CUDA Toolkit", elem_classes="solid small", variant="secondary")
    #     reinitialize_cuda = gr.Button("Reinitialize CUDA", elem_classes="solid small", variant="secondary")
    #     torch_release = gr.Button("Release Torch Resources", elem_classes="solid small", variant="secondary")

    # reinitialize_cuda.click(
    #     fn=initialize_cuda,
    #     inputs=[],
    #     outputs=[]
    # )
    # torch_release.click(
    #     fn=release_torch_resources,
    #     inputs=[],
    #     outputs=[]
    # )
    # reinstall_torch.click(
    #     fn=install_torch,
    #     inputs=[],
    #     outputs=[]
    # )

    # reinstall_cuda_toolkit.click(
    #     fn=install_cuda_toolkit,
    #     inputs=[],
    #     outputs=[]
    # )

    color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row])
    color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)])

    delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display])
    exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)])
    hex_button.click(
        fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list: 
            gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list),
        inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list],
        outputs=[output_image, overlay_image],
        scroll_to_output=True
    )
    generate_input_image.click(
        fn=generate_input_image_click,
        inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), gr.State(0.5), image_size_ratio],
        outputs=[input_image], scroll_to_output=True
    )
    # generate_depth_button.click(
    #     fn=generate_depth_button_click,
    #     inputs=[depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output],
    #     outputs=[depth_map_output, model_output], scroll_to_output=True
    # )
    model_textbox.change(
        fn=update_prompt_notes,
        inputs=model_textbox,
        outputs=prompt_notes_label,preprocess=False
    )
    model_options.change(
        fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()),
        inputs=model_options,
        outputs=[model_textbox, model_textbox]
    )
    model_options.change(
        fn=update_prompt_notes,
        inputs=model_options,
        outputs=prompt_notes_label
    )
    composite_button.click(
        fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity),
        inputs=[input_image, composite_color, composite_opacity],
        outputs=[input_image]
    )

    #use conditioned_image as the input_image for generate_input_image_click
    generate_input_image_from_gallery.click(
        fn=generate_input_image_click,
        inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio],
        outputs=[input_image], scroll_to_output=True
    )

    # Update the state variable with the prerendered image filepath when an image is selected
    prerendered_image_gallery.select(
        fn=on_prerendered_gallery_selection, 
        inputs=None, 
        outputs=[gr.State(current_prerendered_image)],  # Update the state with the selected image
        show_api=False
    )
    # replace input image with selected gallery image
    replace_input_image_button.click(
        lambda: current_prerendered_image.value,
        inputs=None,
        outputs=[input_image], scroll_to_output=True
    )
    output_overlay_composite.change(
        fn=combine_images_with_lerp,
        inputs=[input_image, output_image, output_overlay_composite],
        outputs=[overlay_image], scroll_to_output=True
    )
    output_blend_multiply_composite.change(
        fn=multiply_and_blend_images,
        inputs=[input_image, output_image, output_blend_multiply_composite],
        outputs=[overlay_image],
        scroll_to_output=True
    )
    output_alpha_composite.change(
        fn=alpha_composite_with_control,
        inputs=[input_image, output_image, output_alpha_composite],
        outputs=[overlay_image],
        scroll_to_output=True
    )
    add_border_button.click(
        fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)),
        inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image],
        outputs=[bordered_image_output],
        scroll_to_output=True
    )



#if __name__ == "__main__":
logging.basicConfig(
    format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO
)
logging.info("Environment Variables: %s" % os.environ)
    # if _get_output(["nvcc", "--version"]) is None:
    #     logging.info("Installing CUDA toolkit...")
    #     install_cuda_toolkit()
    # else:
    #     logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))

    # logging.info("Installing CUDA extensions...")
    # setup_runtime_env()
    #main(os.getenv("DEBUG") == "1")
    #main()

hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False)
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")