Spaces:
Runtime error
Runtime error
| import argparse | |
| import json | |
| import os | |
| import shutil | |
| from collections import defaultdict | |
| from inspect import signature | |
| from tempfile import TemporaryDirectory | |
| from typing import Dict, List, Optional, Set | |
| import torch | |
| from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download | |
| from huggingface_hub.file_download import repo_folder_name | |
| from safetensors.torch import load_file, save_file | |
| from transformers import AutoConfig | |
| from transformers.pipelines.base import infer_framework_load_model | |
| import csv | |
| from datetime import datetime | |
| import os | |
| from typing import Optional | |
| from huggingface_hub import HfApi, Repository | |
| import gradio as gr | |
| class AlreadyExists(Exception): | |
| pass | |
| def shared_pointers(tensors): | |
| ptrs = defaultdict(list) | |
| for k, v in tensors.items(): | |
| ptrs[v.data_ptr()].append(k) | |
| failing = [] | |
| for ptr, names in ptrs.items(): | |
| if len(names) > 1: | |
| failing.append(names) | |
| return failing | |
| def check_file_size(sf_filename: str, pt_filename: str): | |
| sf_size = os.stat(sf_filename).st_size | |
| pt_size = os.stat(pt_filename).st_size | |
| if (sf_size - pt_size) / pt_size > 0.01: | |
| raise RuntimeError( | |
| f"""The file size different is more than 1%: | |
| - {sf_filename}: {sf_size} | |
| - {pt_filename}: {pt_size} | |
| """ | |
| ) | |
| def rename(pt_filename: str) -> str: | |
| filename, ext = os.path.splitext(pt_filename) | |
| local = f"{filename}.safetensors" | |
| local = local.replace("pytorch_model", "model") | |
| return local | |
| def convert_multi(model_id: str, folder: str) -> List["CommitOperationAdd"]: | |
| filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json") | |
| with open(filename, "r") as f: | |
| data = json.load(f) | |
| filenames = set(data["weight_map"].values()) | |
| local_filenames = [] | |
| for filename in filenames: | |
| pt_filename = hf_hub_download(repo_id=model_id, filename=filename) | |
| sf_filename = rename(pt_filename) | |
| sf_filename = os.path.join(folder, sf_filename) | |
| convert_file(pt_filename, sf_filename) | |
| local_filenames.append(sf_filename) | |
| index = os.path.join(folder, "model.safetensors.index.json") | |
| with open(index, "w") as f: | |
| newdata = {k: v for k, v in data.items()} | |
| newmap = {k: rename(v) for k, v in data["weight_map"].items()} | |
| newdata["weight_map"] = newmap | |
| json.dump(newdata, f, indent=4) | |
| local_filenames.append(index) | |
| operations = [ | |
| CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames | |
| ] | |
| return operations | |
| def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]: | |
| pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") | |
| sf_name = "model.safetensors" | |
| sf_filename = os.path.join(folder, sf_name) | |
| convert_file(pt_filename, sf_filename) | |
| operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] | |
| return operations | |
| def convert_file( | |
| pt_filename: str, | |
| sf_filename: str, | |
| ): | |
| loaded = torch.load(pt_filename, map_location="cpu") | |
| if "state_dict" in loaded: | |
| loaded = loaded["state_dict"] | |
| shared = shared_pointers(loaded) | |
| for shared_weights in shared: | |
| for name in shared_weights[1:]: | |
| loaded.pop(name) | |
| # For tensors to be contiguous | |
| loaded = {k: v.contiguous() for k, v in loaded.items()} | |
| dirname = os.path.dirname(sf_filename) | |
| os.makedirs(dirname, exist_ok=True) | |
| save_file(loaded, sf_filename, metadata={"format": "pt"}) | |
| check_file_size(sf_filename, pt_filename) | |
| reloaded = load_file(sf_filename) | |
| for k in loaded: | |
| pt_tensor = loaded[k] | |
| sf_tensor = reloaded[k] | |
| if not torch.equal(pt_tensor, sf_tensor): | |
| raise RuntimeError(f"The output tensors do not match for key {k}") | |
| def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: | |
| errors = [] | |
| for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]: | |
| pt_set = set(pt_infos[key]) | |
| sf_set = set(sf_infos[key]) | |
| pt_only = pt_set - sf_set | |
| sf_only = sf_set - pt_set | |
| if pt_only: | |
| errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings") | |
| if sf_only: | |
| errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings") | |
| return "\n".join(errors) | |
| def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]: | |
| try: | |
| discussions = api.get_repo_discussions(repo_id=model_id) | |
| except Exception: | |
| return None | |
| for discussion in discussions: | |
| if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title: | |
| return discussion | |
| def convert_generic(model_id: str, folder: str, filenames: Set[str]) -> List["CommitOperationAdd"]: | |
| operations = [] | |
| extensions = set([".bin", ".ckpt"]) | |
| for filename in filenames: | |
| prefix, ext = os.path.splitext(filename) | |
| if ext in extensions: | |
| pt_filename = hf_hub_download(model_id, filename=filename) | |
| dirname, raw_filename = os.path.split(filename) | |
| if raw_filename == "pytorch_model.bin": | |
| # XXX: This is a special case to handle `transformers` and the | |
| # `transformers` part of the model which is actually loaded by `transformers`. | |
| sf_in_repo = os.path.join(dirname, "model.safetensors") | |
| else: | |
| sf_in_repo = f"{prefix}.safetensors" | |
| sf_filename = os.path.join(folder, sf_in_repo) | |
| convert_file(pt_filename, sf_filename) | |
| return sf_filename | |
| def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]: | |
| pr_title = "Adding `safetensors` variant of this model" | |
| info = api.model_info(model_id) | |
| def is_valid_filename(filename): | |
| return len(filename.split("/")) > 1 or filename in ["pytorch_model.bin", "diffusion_pytorch_model.bin"] | |
| filenames = set(s.rfilename for s in info.siblings if is_valid_filename(s.rfilename)) | |
| print(filenames) | |
| folder = os.path.join("./", repo_folder_name(repo_id=model_id, repo_type="models")) | |
| os.makedirs(folder) | |
| print(folder) | |
| new_pr = None | |
| try: | |
| operations = None | |
| pr = previous_pr(api, model_id, pr_title) | |
| library_name = getattr(info, "library_name", None) | |
| if any(filename.endswith(".safetensors") for filename in filenames) and not force: | |
| raise AlreadyExists(f"Model {model_id} is already converted, skipping..") | |
| elif pr is not None and not force: | |
| url = f"https://huggingface.co/{model_id}/discussions/{pr.num}" | |
| new_pr = pr | |
| raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}") | |
| else: | |
| print("Convert generic") | |
| operations = convert_generic(model_id, folder, filenames) | |
| finally: | |
| print(folder) | |
| return folder | |
| DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions" | |
| DATA_FILENAME = "data.csv" | |
| DATA_FILE = os.path.join("data", DATA_FILENAME) | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| repo: Optional[Repository] = None | |
| if HF_TOKEN: | |
| repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN) | |
| def run(token: str, model_id: str) -> str: | |
| if token == "" or model_id == "": | |
| return """ | |
| ### Invalid input π | |
| Please fill a token and model_id. | |
| """ | |
| try: | |
| api = HfApi(token=token) | |
| is_private = api.model_info(repo_id=model_id).private | |
| folder = convert(api=api, model_id=model_id, force=True) | |
| return folder | |
| except Exception as e: | |
| return f""" | |
| ### Error π’π’π’ | |
| {e} | |
| """ | |
| def conversion(hf_token, Model, Username, Repo_name): | |
| repo_id = Username + "/" + Repo_name | |
| folder = run(hf_token, Model) | |
| api = HfApi() | |
| api.create_repo( | |
| repo_id = repo_id, | |
| token = hf_token, | |
| repo_type = "model", | |
| exist_ok = True | |
| ) | |
| api.upload_file( | |
| path_or_fileobj= folder + "/model.safetensors", | |
| path_in_repo = "model.safetensors", | |
| token = hf_token, | |
| repo_id = repo_id, | |
| repo_type = "model", | |
| ) | |
| shutil.rmtree(folder) | |
| return f"Successfully converted to safeTensors and pushed to huggingface hub {repo_id}" | |
| inputs = [gr.Textbox(label="hf_token", elem_classes="inputs"), | |
| gr.Textbox(label="Model_id_to_convert", elem_classes="inputs"), | |
| gr.Textbox(label="hf_username", elem_classes="inputs"), | |
| gr.Textbox(label="Repo_name", elem_classes="inputs")] | |
| desc = "The Hugging Face Model Converter is a powerful tool designed to streamline the conversion process from PyTorch.bin format to SafeTensors." \ | |
| "This Gradio app offers a user-friendly interface where users can effortlessly input their Hugging Face model details," \ | |
| "including the Hugging Face token, model ID, username, and repository name. With just a click of a button, the conversion process is initiated. Afterwards, the" \ | |
| "safeTensor file is pushed to your repository on huggingface" | |
| demo = gr.Interface(fn=conversion, | |
| inputs=inputs, | |
| outputs=[gr.Textbox(label="Status")], | |
| title="Hugging Face Model Converter: PyTorch.bin to SafeTensors", | |
| description=desc, | |
| theme=gr.Theme.from_hub('HaleyCH/HaleyCH_Theme') | |
| ) | |
| demo.launch(debug=True) |