Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload folder using huggingface_hub
Browse files- README.md +2 -8
- app.py +291 -0
- requirements.txt +1 -0
    	
        README.md
    CHANGED
    
    | @@ -1,12 +1,6 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title:  | 
| 3 | 
            -
             | 
| 4 | 
            -
            colorFrom: red
         | 
| 5 | 
            -
            colorTo: purple
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
             
            sdk_version: 4.19.1
         | 
| 8 | 
            -
            app_file: app.py
         | 
| 9 | 
            -
            pinned: false
         | 
| 10 | 
             
            ---
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: Model_Converter_BIN-SafeTensors
         | 
| 3 | 
            +
            app_file: app.py
         | 
|  | |
|  | |
| 4 | 
             
            sdk: gradio
         | 
| 5 | 
             
            sdk_version: 4.19.1
         | 
|  | |
|  | |
| 6 | 
             
            ---
         | 
|  | |
|  | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,291 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import argparse
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import shutil
         | 
| 5 | 
            +
            from collections import defaultdict
         | 
| 6 | 
            +
            from inspect import signature
         | 
| 7 | 
            +
            from tempfile import TemporaryDirectory
         | 
| 8 | 
            +
            from typing import Dict, List, Optional, Set
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
         | 
| 13 | 
            +
            from huggingface_hub.file_download import repo_folder_name
         | 
| 14 | 
            +
            from safetensors.torch import load_file, save_file
         | 
| 15 | 
            +
            from transformers import AutoConfig
         | 
| 16 | 
            +
            from transformers.pipelines.base import infer_framework_load_model
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import csv
         | 
| 19 | 
            +
            from datetime import datetime
         | 
| 20 | 
            +
            import os
         | 
| 21 | 
            +
            from typing import Optional
         | 
| 22 | 
            +
            from huggingface_hub import HfApi, Repository
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            import gradio as gr
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            class AlreadyExists(Exception):
         | 
| 27 | 
            +
                pass
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def shared_pointers(tensors):
         | 
| 31 | 
            +
                ptrs = defaultdict(list)
         | 
| 32 | 
            +
                for k, v in tensors.items():
         | 
| 33 | 
            +
                    ptrs[v.data_ptr()].append(k)
         | 
| 34 | 
            +
                failing = []
         | 
| 35 | 
            +
                for ptr, names in ptrs.items():
         | 
| 36 | 
            +
                    if len(names) > 1:
         | 
| 37 | 
            +
                        failing.append(names)
         | 
| 38 | 
            +
                return failing
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            def check_file_size(sf_filename: str, pt_filename: str):
         | 
| 42 | 
            +
                sf_size = os.stat(sf_filename).st_size
         | 
| 43 | 
            +
                pt_size = os.stat(pt_filename).st_size
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                if (sf_size - pt_size) / pt_size > 0.01:
         | 
| 46 | 
            +
                    raise RuntimeError(
         | 
| 47 | 
            +
                        f"""The file size different is more than 1%:
         | 
| 48 | 
            +
                     - {sf_filename}: {sf_size}
         | 
| 49 | 
            +
                     - {pt_filename}: {pt_size}
         | 
| 50 | 
            +
                     """
         | 
| 51 | 
            +
                    )
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            def rename(pt_filename: str) -> str:
         | 
| 55 | 
            +
                filename, ext = os.path.splitext(pt_filename)
         | 
| 56 | 
            +
                local = f"{filename}.safetensors"
         | 
| 57 | 
            +
                local = local.replace("pytorch_model", "model")
         | 
| 58 | 
            +
                return local
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            def convert_multi(model_id: str, folder: str) -> List["CommitOperationAdd"]:
         | 
| 62 | 
            +
                filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
         | 
| 63 | 
            +
                with open(filename, "r") as f:
         | 
| 64 | 
            +
                    data = json.load(f)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                filenames = set(data["weight_map"].values())
         | 
| 67 | 
            +
                local_filenames = []
         | 
| 68 | 
            +
                for filename in filenames:
         | 
| 69 | 
            +
                    pt_filename = hf_hub_download(repo_id=model_id, filename=filename)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    sf_filename = rename(pt_filename)
         | 
| 72 | 
            +
                    sf_filename = os.path.join(folder, sf_filename)
         | 
| 73 | 
            +
                    convert_file(pt_filename, sf_filename)
         | 
| 74 | 
            +
                    local_filenames.append(sf_filename)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                index = os.path.join(folder, "model.safetensors.index.json")
         | 
| 77 | 
            +
                with open(index, "w") as f:
         | 
| 78 | 
            +
                    newdata = {k: v for k, v in data.items()}
         | 
| 79 | 
            +
                    newmap = {k: rename(v) for k, v in data["weight_map"].items()}
         | 
| 80 | 
            +
                    newdata["weight_map"] = newmap
         | 
| 81 | 
            +
                    json.dump(newdata, f, indent=4)
         | 
| 82 | 
            +
                local_filenames.append(index)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                operations = [
         | 
| 85 | 
            +
                    CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
         | 
| 86 | 
            +
                ]
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                return operations
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
         | 
| 92 | 
            +
                pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                sf_name = "model.safetensors"
         | 
| 95 | 
            +
                sf_filename = os.path.join(folder, sf_name)
         | 
| 96 | 
            +
                convert_file(pt_filename, sf_filename)
         | 
| 97 | 
            +
                operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
         | 
| 98 | 
            +
                return operations
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            def convert_file(
         | 
| 102 | 
            +
                pt_filename: str,
         | 
| 103 | 
            +
                sf_filename: str,
         | 
| 104 | 
            +
            ):
         | 
| 105 | 
            +
                loaded = torch.load(pt_filename, map_location="cpu")
         | 
| 106 | 
            +
                if "state_dict" in loaded:
         | 
| 107 | 
            +
                    loaded = loaded["state_dict"]
         | 
| 108 | 
            +
                shared = shared_pointers(loaded)
         | 
| 109 | 
            +
                for shared_weights in shared:
         | 
| 110 | 
            +
                    for name in shared_weights[1:]:
         | 
| 111 | 
            +
                        loaded.pop(name)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                # For tensors to be contiguous
         | 
| 114 | 
            +
                loaded = {k: v.contiguous() for k, v in loaded.items()}
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                dirname = os.path.dirname(sf_filename)
         | 
| 117 | 
            +
                os.makedirs(dirname, exist_ok=True)
         | 
| 118 | 
            +
                save_file(loaded, sf_filename, metadata={"format": "pt"})
         | 
| 119 | 
            +
                check_file_size(sf_filename, pt_filename)
         | 
| 120 | 
            +
                reloaded = load_file(sf_filename)
         | 
| 121 | 
            +
                for k in loaded:
         | 
| 122 | 
            +
                    pt_tensor = loaded[k]
         | 
| 123 | 
            +
                    sf_tensor = reloaded[k]
         | 
| 124 | 
            +
                    if not torch.equal(pt_tensor, sf_tensor):
         | 
| 125 | 
            +
                        raise RuntimeError(f"The output tensors do not match for key {k}")
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str:
         | 
| 129 | 
            +
                errors = []
         | 
| 130 | 
            +
                for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]:
         | 
| 131 | 
            +
                    pt_set = set(pt_infos[key])
         | 
| 132 | 
            +
                    sf_set = set(sf_infos[key])
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    pt_only = pt_set - sf_set
         | 
| 135 | 
            +
                    sf_only = sf_set - pt_set
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    if pt_only:
         | 
| 138 | 
            +
                        errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings")
         | 
| 139 | 
            +
                    if sf_only:
         | 
| 140 | 
            +
                        errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings")
         | 
| 141 | 
            +
                return "\n".join(errors)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
         | 
| 144 | 
            +
                try:
         | 
| 145 | 
            +
                    discussions = api.get_repo_discussions(repo_id=model_id)
         | 
| 146 | 
            +
                except Exception:
         | 
| 147 | 
            +
                    return None
         | 
| 148 | 
            +
                for discussion in discussions:
         | 
| 149 | 
            +
                    if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
         | 
| 150 | 
            +
                        return discussion
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def convert_generic(model_id: str, folder: str, filenames: Set[str]) -> List["CommitOperationAdd"]:
         | 
| 154 | 
            +
                operations = []
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                extensions = set([".bin", ".ckpt"])
         | 
| 157 | 
            +
                for filename in filenames:
         | 
| 158 | 
            +
                    prefix, ext = os.path.splitext(filename)
         | 
| 159 | 
            +
                    if ext in extensions:
         | 
| 160 | 
            +
                        pt_filename = hf_hub_download(model_id, filename=filename)
         | 
| 161 | 
            +
                        dirname, raw_filename = os.path.split(filename)
         | 
| 162 | 
            +
                        if raw_filename == "pytorch_model.bin":
         | 
| 163 | 
            +
                            # XXX: This is a special case to handle `transformers` and the
         | 
| 164 | 
            +
                            # `transformers` part of the model which is actually loaded by `transformers`.
         | 
| 165 | 
            +
                            sf_in_repo = os.path.join(dirname, "model.safetensors")
         | 
| 166 | 
            +
                        else:
         | 
| 167 | 
            +
                            sf_in_repo = f"{prefix}.safetensors"
         | 
| 168 | 
            +
                        sf_filename = os.path.join(folder, sf_in_repo)
         | 
| 169 | 
            +
                        convert_file(pt_filename, sf_filename)
         | 
| 170 | 
            +
                return sf_filename
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
         | 
| 174 | 
            +
                pr_title = "Adding `safetensors` variant of this model"
         | 
| 175 | 
            +
                info = api.model_info(model_id)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def is_valid_filename(filename):
         | 
| 178 | 
            +
                    return len(filename.split("/")) > 1 or filename in ["pytorch_model.bin", "diffusion_pytorch_model.bin"]
         | 
| 179 | 
            +
                filenames = set(s.rfilename for s in info.siblings if is_valid_filename(s.rfilename))
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                print(filenames)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
             | 
| 184 | 
            +
                folder = os.path.join("./", repo_folder_name(repo_id=model_id, repo_type="models"))
         | 
| 185 | 
            +
                os.makedirs(folder)
         | 
| 186 | 
            +
                print(folder)
         | 
| 187 | 
            +
                new_pr = None
         | 
| 188 | 
            +
                try:
         | 
| 189 | 
            +
                    operations = None
         | 
| 190 | 
            +
                    pr = previous_pr(api, model_id, pr_title)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    library_name = getattr(info, "library_name", None)
         | 
| 193 | 
            +
                    if any(filename.endswith(".safetensors") for filename in filenames) and not force:
         | 
| 194 | 
            +
                        raise AlreadyExists(f"Model {model_id} is already converted, skipping..")
         | 
| 195 | 
            +
                    elif pr is not None and not force:
         | 
| 196 | 
            +
                        url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
         | 
| 197 | 
            +
                        new_pr = pr
         | 
| 198 | 
            +
                        raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
         | 
| 199 | 
            +
                    else:
         | 
| 200 | 
            +
                        print("Convert generic")
         | 
| 201 | 
            +
                        operations = convert_generic(model_id, folder, filenames)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                finally:
         | 
| 204 | 
            +
                    print(folder)
         | 
| 205 | 
            +
                return folder
         | 
| 206 | 
            +
             | 
| 207 | 
            +
             | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
             | 
| 212 | 
            +
            DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions"
         | 
| 213 | 
            +
            DATA_FILENAME = "data.csv"
         | 
| 214 | 
            +
            DATA_FILE = os.path.join("data", DATA_FILENAME)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
            HF_TOKEN = os.environ.get("HF_TOKEN")
         | 
| 217 | 
            +
             | 
| 218 | 
            +
            repo: Optional[Repository] = None
         | 
| 219 | 
            +
            if HF_TOKEN:
         | 
| 220 | 
            +
                repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            def run(token: str, model_id: str) -> str:
         | 
| 224 | 
            +
                if token == "" or model_id == "":
         | 
| 225 | 
            +
                    return """
         | 
| 226 | 
            +
                    ### Invalid input π
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    Please fill a token and model_id.
         | 
| 229 | 
            +
                    """
         | 
| 230 | 
            +
                try:
         | 
| 231 | 
            +
                    api = HfApi(token=token)
         | 
| 232 | 
            +
                    is_private = api.model_info(repo_id=model_id).private
         | 
| 233 | 
            +
                    folder = convert(api=api, model_id=model_id, force=True)
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    return folder
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                except Exception as e:
         | 
| 238 | 
            +
                    return f"""
         | 
| 239 | 
            +
                    ### Error π’π’π’
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    {e}
         | 
| 242 | 
            +
                    """
         | 
| 243 | 
            +
             | 
| 244 | 
            +
            def conversion(hf_token, Model, Username, Repo_name):
         | 
| 245 | 
            +
              repo_id = Username + "/" + Repo_name
         | 
| 246 | 
            +
              folder = run(hf_token, Model)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
              api = HfApi()
         | 
| 249 | 
            +
             | 
| 250 | 
            +
              api.create_repo(
         | 
| 251 | 
            +
                  repo_id = repo_id,
         | 
| 252 | 
            +
                  token = hf_token,
         | 
| 253 | 
            +
                  repo_type = "model",
         | 
| 254 | 
            +
                  exist_ok = True
         | 
| 255 | 
            +
              )
         | 
| 256 | 
            +
             | 
| 257 | 
            +
              api.upload_file(
         | 
| 258 | 
            +
                path_or_fileobj= folder + "/model.safetensors",
         | 
| 259 | 
            +
                path_in_repo = "model.safetensors",
         | 
| 260 | 
            +
                token = hf_token,
         | 
| 261 | 
            +
                repo_id = repo_id,
         | 
| 262 | 
            +
                repo_type = "model",
         | 
| 263 | 
            +
              )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
              shutil.rmtree(folder)
         | 
| 266 | 
            +
              return "Successfully converted to safeTensors"
         | 
| 267 | 
            +
             | 
| 268 | 
            +
             | 
| 269 | 
            +
            inputs = [gr.Textbox(label="hf_token", elem_classes="inputs"),
         | 
| 270 | 
            +
            gr.Textbox(label="Model_id_to_convert", elem_classes="inputs"),
         | 
| 271 | 
            +
            gr.Textbox(label="hf_username", elem_classes="inputs"),
         | 
| 272 | 
            +
            gr.Textbox(label="Repo_name", elem_classes="inputs")]
         | 
| 273 | 
            +
             | 
| 274 | 
            +
             | 
| 275 | 
            +
            desc = "This Gradio app **GreetLucky** takes a *name as input* and creates " \
         | 
| 276 | 
            +
                   "a friendly greeting along with a randomly assigned ***lucky number between 1 and 100.***"
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            article = "The Hugging Face Model Converter is a powerful tool designed to streamline the conversion process from PyTorch.bin format to SafeTensors." \
         | 
| 279 | 
            +
             "This Gradio app offers a user-friendly interface where users can effortlessly input their Hugging Face model details," \
         | 
| 280 | 
            +
             "including the Hugging Face token, model ID, username, and repository name. With just a click of a button, the conversion process is initiated"
         | 
| 281 | 
            +
             | 
| 282 | 
            +
            demo = gr.Interface(fn=conversion,
         | 
| 283 | 
            +
                                inputs=inputs,
         | 
| 284 | 
            +
                                outputs=[gr.Textbox(label="Status")],
         | 
| 285 | 
            +
                                title="Hugging Face Model Converter: PyTorch.bin to SafeTensors",
         | 
| 286 | 
            +
                                description=desc,
         | 
| 287 | 
            +
                                article=article,
         | 
| 288 | 
            +
                                theme=gr.Theme.from_hub('HaleyCH/HaleyCH_Theme')
         | 
| 289 | 
            +
                                )
         | 
| 290 | 
            +
             | 
| 291 | 
            +
            demo.launch(debug=True)
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            gradio
         |