Spaces:
Running
Running
Commit
·
0e92f07
1
Parent(s):
9b1d949
Prepare Flask backend for Hugging Face Spaces deployment
Browse files- .dockerignore +6 -0
- .gitignore +124 -0
- Dockerfile +33 -0
- README.md +0 -10
- app.py +273 -0
- model/generate.py +262 -0
- requirements.txt +0 -0
.dockerignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.pyc
|
3 |
+
.git
|
4 |
+
.vscode
|
5 |
+
*.log
|
6 |
+
tests
|
.gitignore
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# Distribution / packaging
|
7 |
+
.Python
|
8 |
+
build/
|
9 |
+
develop-eggs/
|
10 |
+
dist/
|
11 |
+
downloads/
|
12 |
+
eggs/
|
13 |
+
.eggs/
|
14 |
+
lib/
|
15 |
+
lib64/
|
16 |
+
parts/
|
17 |
+
sdist/
|
18 |
+
var/
|
19 |
+
wheels/
|
20 |
+
pip-wheel-metadata/
|
21 |
+
share/python-wheels/
|
22 |
+
*.egg-info/
|
23 |
+
.installed.cfg
|
24 |
+
*.egg
|
25 |
+
|
26 |
+
# PyInstaller
|
27 |
+
# Usually these files are written by a python script from a template
|
28 |
+
*.manifest
|
29 |
+
*.spec
|
30 |
+
|
31 |
+
# Installer logs
|
32 |
+
pip-log.txt
|
33 |
+
pip-delete-this-directory.txt
|
34 |
+
|
35 |
+
# Unit test / coverage reports
|
36 |
+
htmlcov/
|
37 |
+
.tox/
|
38 |
+
.nox/
|
39 |
+
.coverage
|
40 |
+
.coverage.*
|
41 |
+
.cache
|
42 |
+
nosetests.xml
|
43 |
+
coverage.xml
|
44 |
+
*.cover
|
45 |
+
*.py,cover
|
46 |
+
.hypothesis/
|
47 |
+
.pytest_cache/
|
48 |
+
|
49 |
+
# Translations
|
50 |
+
*.mo
|
51 |
+
*.pot
|
52 |
+
|
53 |
+
# Django stuff:
|
54 |
+
*.log
|
55 |
+
local_settings.py
|
56 |
+
db.sqlite3
|
57 |
+
|
58 |
+
# Flask stuff:
|
59 |
+
instance/
|
60 |
+
.webassets-cache
|
61 |
+
|
62 |
+
# Scrapy stuff:
|
63 |
+
.scrapy
|
64 |
+
|
65 |
+
# Sphinx documentation
|
66 |
+
docs/_build/
|
67 |
+
|
68 |
+
# PyBuilder
|
69 |
+
target/
|
70 |
+
|
71 |
+
# Jupyter Notebook
|
72 |
+
.ipynb_checkpoints
|
73 |
+
|
74 |
+
# IPython
|
75 |
+
profile_default/
|
76 |
+
ipython_config.py
|
77 |
+
|
78 |
+
# pyenv
|
79 |
+
.python-version
|
80 |
+
|
81 |
+
# pipenv
|
82 |
+
pipenv.lock
|
83 |
+
|
84 |
+
# poetry
|
85 |
+
poetry.lock
|
86 |
+
|
87 |
+
# env files
|
88 |
+
.env
|
89 |
+
.venv
|
90 |
+
env/
|
91 |
+
venv/
|
92 |
+
ENV/
|
93 |
+
env.bak/
|
94 |
+
venv.bak/
|
95 |
+
|
96 |
+
# Spyder project settings
|
97 |
+
.spyderproject
|
98 |
+
.spyproject
|
99 |
+
|
100 |
+
# Rope project settings
|
101 |
+
.ropeproject
|
102 |
+
|
103 |
+
# mkdocs documentation
|
104 |
+
/site
|
105 |
+
|
106 |
+
# mypy
|
107 |
+
.mypy_cache/
|
108 |
+
.dmypy.json
|
109 |
+
dmypy.json
|
110 |
+
|
111 |
+
# Pyre type checker
|
112 |
+
.pyre/
|
113 |
+
|
114 |
+
# pytype static type analyzer
|
115 |
+
.pytype/
|
116 |
+
|
117 |
+
# C extensions
|
118 |
+
*.so
|
119 |
+
|
120 |
+
# VS Code settings
|
121 |
+
.vscode/
|
122 |
+
|
123 |
+
# PyCharm settings
|
124 |
+
.idea/
|
Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
git \
|
9 |
+
&& rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Copy and install requirements
|
12 |
+
COPY requirements.txt .
|
13 |
+
RUN pip install --no-cache-dir --upgrade pip
|
14 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
15 |
+
RUN pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
16 |
+
|
17 |
+
# Set environment variables for AI models
|
18 |
+
ENV TRANSFORMERS_CACHE=/tmp/model_cache
|
19 |
+
ENV HF_HOME=/tmp/model_cache
|
20 |
+
ENV TOKENIZERS_PARALLELISM=false
|
21 |
+
ENV OMP_NUM_THREADS=1
|
22 |
+
|
23 |
+
# Create cache directory
|
24 |
+
RUN mkdir -p /tmp/model_cache
|
25 |
+
|
26 |
+
# Copy application
|
27 |
+
COPY . .
|
28 |
+
|
29 |
+
# ✅ Expose correct port for Hugging Face Spaces
|
30 |
+
EXPOSE 7860
|
31 |
+
|
32 |
+
# ✅ Run app on correct port
|
33 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "1", "--timeout", "120", "app:app"]
|
README.md
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: TestCaseGenerator
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: blue
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
from model.generate import generate_test_cases, get_generator, monitor_memory
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
import gc
|
7 |
+
import psutil
|
8 |
+
from functools import wraps
|
9 |
+
import time
|
10 |
+
import threading
|
11 |
+
|
12 |
+
# Configure logging for Railway
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
16 |
+
)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
app = Flask(__name__)
|
20 |
+
CORS(app)
|
21 |
+
|
22 |
+
# Configuration for Railway
|
23 |
+
app.config['JSON_SORT_KEYS'] = False
|
24 |
+
app.config['JSONIFY_PRETTYPRINT_REGULAR'] = False # Reduce response size
|
25 |
+
|
26 |
+
# Thread-safe initialization
|
27 |
+
_init_lock = threading.Lock()
|
28 |
+
_initialized = False
|
29 |
+
|
30 |
+
def init_model():
|
31 |
+
"""Initialize model on startup"""
|
32 |
+
try:
|
33 |
+
# Skip AI model loading in low memory environments
|
34 |
+
memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
|
35 |
+
if memory_mb > 200 or os.environ.get('RAILWAY_ENVIRONMENT'):
|
36 |
+
logger.info("⚠️ Skipping AI model loading due to memory constraints")
|
37 |
+
logger.info("🔧 Using template-based generation mode")
|
38 |
+
return True
|
39 |
+
|
40 |
+
logger.info("🚀 Initializing AI model...")
|
41 |
+
generator = get_generator()
|
42 |
+
model_info = generator.get_model_info()
|
43 |
+
logger.info(f"✅ Model initialized: {model_info['model_name']} | Memory: {model_info['memory_usage']}")
|
44 |
+
return True
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"❌ Model initialization failed: {e}")
|
47 |
+
logger.info("🔧 Falling back to template-based generation")
|
48 |
+
return False
|
49 |
+
|
50 |
+
def check_health():
|
51 |
+
"""Check system health"""
|
52 |
+
try:
|
53 |
+
memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
|
54 |
+
return {
|
55 |
+
"status": "healthy" if memory_mb < 450 else "warning",
|
56 |
+
"memory_usage": f"{memory_mb:.1f}MB",
|
57 |
+
"memory_limit": "512MB"
|
58 |
+
}
|
59 |
+
except Exception:
|
60 |
+
return {"status": "unknown", "memory_usage": "unavailable"}
|
61 |
+
|
62 |
+
def smart_memory_monitor(func):
|
63 |
+
"""Enhanced memory monitoring with automatic cleanup"""
|
64 |
+
@wraps(func)
|
65 |
+
def wrapper(*args, **kwargs):
|
66 |
+
start_time = time.time()
|
67 |
+
try:
|
68 |
+
initial_memory = psutil.Process().memory_info().rss / 1024 / 1024
|
69 |
+
logger.info(f"🔍 {func.__name__} started | Memory: {initial_memory:.1f}MB")
|
70 |
+
|
71 |
+
if initial_memory > 400:
|
72 |
+
logger.warning("⚠️ High memory detected, forcing cleanup...")
|
73 |
+
gc.collect()
|
74 |
+
|
75 |
+
result = func(*args, **kwargs)
|
76 |
+
return result
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"❌ Error in {func.__name__}: {str(e)}")
|
79 |
+
return jsonify({
|
80 |
+
"error": "Internal server error occurred",
|
81 |
+
"message": "Please try again or contact support"
|
82 |
+
}), 500
|
83 |
+
finally:
|
84 |
+
final_memory = psutil.Process().memory_info().rss / 1024 / 1024
|
85 |
+
execution_time = time.time() - start_time
|
86 |
+
|
87 |
+
logger.info(f"✅ {func.__name__} completed | Memory: {final_memory:.1f}MB | Time: {execution_time:.2f}s")
|
88 |
+
|
89 |
+
if final_memory > 450:
|
90 |
+
logger.warning("🧹 High memory usage, forcing aggressive cleanup...")
|
91 |
+
gc.collect()
|
92 |
+
post_cleanup_memory = psutil.Process().memory_info().rss / 1024 / 1024
|
93 |
+
logger.info(f"🧹 Post-cleanup memory: {post_cleanup_memory:.1f}MB")
|
94 |
+
return wrapper
|
95 |
+
|
96 |
+
def ensure_initialized():
|
97 |
+
"""Ensure model is initialized (thread-safe)"""
|
98 |
+
global _initialized
|
99 |
+
if not _initialized:
|
100 |
+
with _init_lock:
|
101 |
+
if not _initialized:
|
102 |
+
logger.info("🚀 Flask app starting up on Railway...")
|
103 |
+
success = init_model()
|
104 |
+
if success:
|
105 |
+
logger.info("✅ Startup completed successfully")
|
106 |
+
else:
|
107 |
+
logger.warning("⚠️ Model initialization failed, using template mode")
|
108 |
+
_initialized = True
|
109 |
+
|
110 |
+
@app.before_request
|
111 |
+
def before_request():
|
112 |
+
"""Initialize model on first request (Flask 2.2+ compatible)"""
|
113 |
+
ensure_initialized()
|
114 |
+
|
115 |
+
@app.route('/')
|
116 |
+
def home():
|
117 |
+
"""Health check endpoint with system status"""
|
118 |
+
health_data = check_health()
|
119 |
+
try:
|
120 |
+
generator = get_generator()
|
121 |
+
model_info = generator.get_model_info()
|
122 |
+
except Exception:
|
123 |
+
model_info = {
|
124 |
+
"model_name": "Template-Based Generator",
|
125 |
+
"status": "template_mode",
|
126 |
+
"optimization": "memory_safe"
|
127 |
+
}
|
128 |
+
|
129 |
+
return jsonify({
|
130 |
+
"message": "AI Test Case Generator Backend is running",
|
131 |
+
"status": health_data["status"],
|
132 |
+
"memory_usage": health_data["memory_usage"],
|
133 |
+
"model": {
|
134 |
+
"name": model_info["model_name"],
|
135 |
+
"status": model_info["status"],
|
136 |
+
"optimization": model_info.get("optimization", "standard")
|
137 |
+
},
|
138 |
+
"version": "1.0.0-railway-optimized"
|
139 |
+
})
|
140 |
+
|
141 |
+
@app.route('/health')
|
142 |
+
def health():
|
143 |
+
"""Dedicated health check for Railway monitoring"""
|
144 |
+
health_status = check_health()
|
145 |
+
try:
|
146 |
+
generator = get_generator()
|
147 |
+
model_info = generator.get_model_info()
|
148 |
+
model_loaded = model_info["status"] == "loaded"
|
149 |
+
except Exception:
|
150 |
+
model_loaded = False
|
151 |
+
|
152 |
+
return jsonify({
|
153 |
+
"status": health_status["status"],
|
154 |
+
"memory": health_status["memory_usage"],
|
155 |
+
"model_loaded": model_loaded,
|
156 |
+
"uptime": "ok"
|
157 |
+
})
|
158 |
+
|
159 |
+
@app.route('/generate_test_cases', methods=['POST'])
|
160 |
+
@smart_memory_monitor
|
161 |
+
def generate():
|
162 |
+
"""Generate test cases with enhanced error handling"""
|
163 |
+
if not request.is_json:
|
164 |
+
return jsonify({"error": "Request must be JSON"}), 400
|
165 |
+
|
166 |
+
data = request.get_json()
|
167 |
+
if not data:
|
168 |
+
return jsonify({"error": "No JSON data provided"}), 400
|
169 |
+
|
170 |
+
srs_text = data.get('srs', '').strip()
|
171 |
+
|
172 |
+
if not srs_text:
|
173 |
+
return jsonify({"error": "No SRS or prompt content provided"}), 400
|
174 |
+
|
175 |
+
if len(srs_text) > 5000:
|
176 |
+
logger.warning(f"SRS text truncated from {len(srs_text)} to 5000 characters")
|
177 |
+
srs_text = srs_text[:5000]
|
178 |
+
|
179 |
+
try:
|
180 |
+
logger.info(f"🎯 Generating test cases for input ({len(srs_text)} chars)")
|
181 |
+
test_cases = generate_test_cases(srs_text)
|
182 |
+
|
183 |
+
if not test_cases or len(test_cases) == 0:
|
184 |
+
logger.error("No test cases generated")
|
185 |
+
return jsonify({"error": "Failed to generate test cases"}), 500
|
186 |
+
|
187 |
+
try:
|
188 |
+
generator = get_generator()
|
189 |
+
model_info = generator.get_model_info()
|
190 |
+
model_used = model_info.get("model_name", "Unknown Model")
|
191 |
+
generation_method = model_info.get("status", "unknown")
|
192 |
+
except Exception:
|
193 |
+
model_used = "Template-Based Generator"
|
194 |
+
generation_method = "template_mode"
|
195 |
+
|
196 |
+
if model_used == "Template-Based Generator":
|
197 |
+
model_algorithm = "Rule-based Template"
|
198 |
+
model_reason = "Used rule-based generation due to memory constraints or fallback condition."
|
199 |
+
elif "distilgpt2" in model_used:
|
200 |
+
model_algorithm = "Transformer-based LM"
|
201 |
+
model_reason = "Used DistilGPT2 for balanced performance and memory efficiency."
|
202 |
+
elif "DialoGPT" in model_used:
|
203 |
+
model_algorithm = "Transformer-based LM"
|
204 |
+
model_reason = "Used DialoGPT-small as it fits within memory limits and handles conversational input well."
|
205 |
+
else:
|
206 |
+
model_algorithm = "Transformer-based LM"
|
207 |
+
model_reason = "Used available Hugging Face causal LM due to sufficient resources."
|
208 |
+
|
209 |
+
logger.info(f"✅ Successfully generated {len(test_cases)} test cases")
|
210 |
+
|
211 |
+
return jsonify({
|
212 |
+
"test_cases": test_cases,
|
213 |
+
"count": len(test_cases),
|
214 |
+
"model_used": model_used,
|
215 |
+
"generation_method": generation_method,
|
216 |
+
"model_algorithm": model_algorithm,
|
217 |
+
"model_reason": model_reason
|
218 |
+
})
|
219 |
+
|
220 |
+
except Exception as e:
|
221 |
+
logger.error(f"❌ Test case generation failed: {str(e)}")
|
222 |
+
return jsonify({
|
223 |
+
"error": "Failed to generate test cases",
|
224 |
+
"message": "Please try again with different input"
|
225 |
+
}), 500
|
226 |
+
|
227 |
+
@app.route('/model_info')
|
228 |
+
def model_info():
|
229 |
+
"""Get current model information"""
|
230 |
+
try:
|
231 |
+
generator = get_generator()
|
232 |
+
info = generator.get_model_info()
|
233 |
+
health_data = check_health()
|
234 |
+
|
235 |
+
return jsonify({
|
236 |
+
"model": info,
|
237 |
+
"system": health_data
|
238 |
+
})
|
239 |
+
except Exception as e:
|
240 |
+
logger.error(f"Error getting model info: {e}")
|
241 |
+
return jsonify({"error": "Unable to get model information"}), 500
|
242 |
+
|
243 |
+
@app.errorhandler(404)
|
244 |
+
def not_found(error):
|
245 |
+
return jsonify({"error": "Endpoint not found"}), 404
|
246 |
+
|
247 |
+
@app.errorhandler(405)
|
248 |
+
def method_not_allowed(error):
|
249 |
+
return jsonify({"error": "Method not allowed"}), 405
|
250 |
+
|
251 |
+
@app.errorhandler(500)
|
252 |
+
def internal_error(error):
|
253 |
+
logger.error(f"Internal server error: {error}")
|
254 |
+
return jsonify({"error": "Internal server error"}), 500
|
255 |
+
|
256 |
+
if __name__ == '__main__':
|
257 |
+
port = int(os.environ.get("PORT", 5000))
|
258 |
+
debug_mode = os.environ.get("FLASK_ENV") == "development"
|
259 |
+
|
260 |
+
logger.info(f"🚀 Starting Flask app on port {port}")
|
261 |
+
logger.info(f"🔧 Debug mode: {debug_mode}")
|
262 |
+
logger.info(f"🖥️ Environment: {'Railway' if os.environ.get('RAILWAY_ENVIRONMENT') else 'Local'}")
|
263 |
+
|
264 |
+
if not os.environ.get('RAILWAY_ENVIRONMENT'):
|
265 |
+
ensure_initialized()
|
266 |
+
|
267 |
+
app.run(
|
268 |
+
host='0.0.0.0',
|
269 |
+
port=port,
|
270 |
+
debug=debug_mode,
|
271 |
+
threaded=True,
|
272 |
+
use_reloader=False
|
273 |
+
)
|
model/generate.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import logging
|
5 |
+
import psutil
|
6 |
+
import re
|
7 |
+
import gc
|
8 |
+
|
9 |
+
# Initialize logger
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
|
13 |
+
# List of memory-optimized models
|
14 |
+
MEMORY_OPTIMIZED_MODELS = [
|
15 |
+
"gpt2", # ~500MB
|
16 |
+
"distilgpt2", # ~250MB
|
17 |
+
"microsoft/DialoGPT-small", # ~250MB
|
18 |
+
"huggingface/CodeBERTa-small-v1", # Code tasks
|
19 |
+
]
|
20 |
+
|
21 |
+
# Singleton state
|
22 |
+
_generator_instance = None
|
23 |
+
|
24 |
+
def get_optimal_model_for_memory():
|
25 |
+
"""Select the best model based on available memory."""
|
26 |
+
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
|
27 |
+
logger.info(f"Available memory: {available_memory:.1f}MB")
|
28 |
+
|
29 |
+
if available_memory < 300:
|
30 |
+
return None # Use template fallback
|
31 |
+
elif available_memory < 600:
|
32 |
+
return "microsoft/DialoGPT-small"
|
33 |
+
else:
|
34 |
+
return "distilgpt2"
|
35 |
+
|
36 |
+
def load_model_with_memory_optimization(model_name):
|
37 |
+
"""Load model with low memory settings."""
|
38 |
+
try:
|
39 |
+
logger.info(f"Loading {model_name} with memory optimizations...")
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
|
42 |
+
|
43 |
+
if tokenizer.pad_token is None:
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
device_map="cpu",
|
50 |
+
low_cpu_mem_usage=True,
|
51 |
+
use_cache=False,
|
52 |
+
)
|
53 |
+
|
54 |
+
model.eval()
|
55 |
+
model.gradient_checkpointing_enable()
|
56 |
+
logger.info(f"✅ Model {model_name} loaded successfully")
|
57 |
+
return tokenizer, model
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"❌ Failed to load model {model_name}: {e}")
|
61 |
+
return None, None
|
62 |
+
|
63 |
+
def extract_keywords(text):
|
64 |
+
common_keywords = [
|
65 |
+
'login', 'authentication', 'user', 'password', 'database', 'data',
|
66 |
+
'interface', 'api', 'function', 'feature', 'requirement', 'system',
|
67 |
+
'input', 'output', 'validation', 'error', 'security', 'performance'
|
68 |
+
]
|
69 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
70 |
+
return [word for word in words if word in common_keywords]
|
71 |
+
|
72 |
+
def generate_template_based_test_cases(srs_text):
|
73 |
+
keywords = extract_keywords(srs_text)
|
74 |
+
test_cases = []
|
75 |
+
|
76 |
+
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
|
77 |
+
test_cases.extend([
|
78 |
+
{
|
79 |
+
"id": "TC_001",
|
80 |
+
"title": "Valid Login Test",
|
81 |
+
"description": "Test login with valid credentials",
|
82 |
+
"steps": ["Enter valid username", "Enter valid password", "Click login"],
|
83 |
+
"expected": "User should be logged in successfully"
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"id": "TC_002",
|
87 |
+
"title": "Invalid Login Test",
|
88 |
+
"description": "Test login with invalid credentials",
|
89 |
+
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
|
90 |
+
"expected": "Error message should be displayed"
|
91 |
+
}
|
92 |
+
])
|
93 |
+
|
94 |
+
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
|
95 |
+
test_cases.append({
|
96 |
+
"id": "TC_003",
|
97 |
+
"title": "Data Storage Test",
|
98 |
+
"description": "Test data storage functionality",
|
99 |
+
"steps": ["Enter data", "Save data", "Verify storage"],
|
100 |
+
"expected": "Data should be stored correctly"
|
101 |
+
})
|
102 |
+
|
103 |
+
if not test_cases:
|
104 |
+
test_cases = [
|
105 |
+
{
|
106 |
+
"id": "TC_001",
|
107 |
+
"title": "Basic Functionality Test",
|
108 |
+
"description": "Test basic system functionality",
|
109 |
+
"steps": ["Access the system", "Perform basic operations", "Verify results"],
|
110 |
+
"expected": "System should work as expected"
|
111 |
+
}
|
112 |
+
]
|
113 |
+
|
114 |
+
return test_cases
|
115 |
+
|
116 |
+
def parse_generated_test_cases(generated_text):
|
117 |
+
lines = generated_text.split('\n')
|
118 |
+
test_cases = []
|
119 |
+
current_case = {}
|
120 |
+
case_counter = 1
|
121 |
+
|
122 |
+
for line in lines:
|
123 |
+
line = line.strip()
|
124 |
+
if line.startswith(('1.', '2.', '3.', 'TC', 'Test')):
|
125 |
+
if current_case:
|
126 |
+
test_cases.append(current_case)
|
127 |
+
current_case = {
|
128 |
+
"id": f"TC_{case_counter:03d}",
|
129 |
+
"title": line,
|
130 |
+
"description": line,
|
131 |
+
"steps": ["Execute the test"],
|
132 |
+
"expected": "Test should pass"
|
133 |
+
}
|
134 |
+
case_counter += 1
|
135 |
+
|
136 |
+
if current_case:
|
137 |
+
test_cases.append(current_case)
|
138 |
+
|
139 |
+
if not test_cases:
|
140 |
+
return [{
|
141 |
+
"id": "TC_001",
|
142 |
+
"title": "Generated Test Case",
|
143 |
+
"description": "Auto-generated test case based on requirements",
|
144 |
+
"steps": ["Review requirements", "Execute test", "Verify results"],
|
145 |
+
"expected": "Requirements should be met"
|
146 |
+
}]
|
147 |
+
|
148 |
+
return test_cases
|
149 |
+
|
150 |
+
def generate_with_ai_model(srs_text, tokenizer, model):
|
151 |
+
max_input_length = 200
|
152 |
+
if len(srs_text) > max_input_length:
|
153 |
+
srs_text = srs_text[:max_input_length]
|
154 |
+
|
155 |
+
prompt = f"""Generate test cases for this software requirement:
|
156 |
+
{srs_text}
|
157 |
+
|
158 |
+
Test Cases:
|
159 |
+
1."""
|
160 |
+
|
161 |
+
try:
|
162 |
+
inputs = tokenizer.encode(
|
163 |
+
prompt,
|
164 |
+
return_tensors="pt",
|
165 |
+
max_length=150,
|
166 |
+
truncation=True
|
167 |
+
)
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
outputs = model.generate(
|
171 |
+
inputs,
|
172 |
+
max_new_tokens=100,
|
173 |
+
num_return_sequences=1,
|
174 |
+
temperature=0.7,
|
175 |
+
do_sample=True,
|
176 |
+
pad_token_id=tokenizer.eos_token_id,
|
177 |
+
use_cache=False,
|
178 |
+
)
|
179 |
+
|
180 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
181 |
+
del inputs, outputs
|
182 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
183 |
+
return parse_generated_test_cases(generated_text)
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
logger.error(f"❌ AI generation failed: {e}")
|
187 |
+
raise
|
188 |
+
|
189 |
+
def generate_with_fallback(srs_text):
|
190 |
+
model_name = get_optimal_model_for_memory()
|
191 |
+
|
192 |
+
if model_name:
|
193 |
+
tokenizer, model = load_model_with_memory_optimization(model_name)
|
194 |
+
if tokenizer and model:
|
195 |
+
try:
|
196 |
+
test_cases = generate_with_ai_model(srs_text, tokenizer, model)
|
197 |
+
reason = get_algorithm_reason(model_name)
|
198 |
+
return test_cases, model_name, "transformer (causal LM)", reason
|
199 |
+
except Exception as e:
|
200 |
+
logger.warning(f"AI generation failed: {e}, falling back to templates")
|
201 |
+
|
202 |
+
logger.info("⚠️ Using fallback template-based generation")
|
203 |
+
test_cases = generate_template_based_test_cases(srs_text)
|
204 |
+
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
|
205 |
+
|
206 |
+
# ✅ Function exposed to app.py
|
207 |
+
def generate_test_cases(srs_text):
|
208 |
+
return generate_with_fallback(srs_text)[0]
|
209 |
+
|
210 |
+
def get_generator():
|
211 |
+
global _generator_instance
|
212 |
+
if _generator_instance is None:
|
213 |
+
class Generator:
|
214 |
+
def __init__(self):
|
215 |
+
self.model_name = get_optimal_model_for_memory()
|
216 |
+
self.tokenizer = None
|
217 |
+
self.model = None
|
218 |
+
if self.model_name:
|
219 |
+
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
|
220 |
+
|
221 |
+
def get_model_info(self):
|
222 |
+
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
223 |
+
return {
|
224 |
+
"model_name": self.model_name if self.model_name else "Template-Based Generator",
|
225 |
+
"status": "loaded" if self.model else "template_mode",
|
226 |
+
"memory_usage": f"{mem:.1f}MB",
|
227 |
+
"optimization": "low_memory"
|
228 |
+
}
|
229 |
+
|
230 |
+
_generator_instance = Generator()
|
231 |
+
|
232 |
+
return _generator_instance
|
233 |
+
|
234 |
+
def monitor_memory():
|
235 |
+
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
236 |
+
logger.info(f"Memory usage: {mem:.1f}MB")
|
237 |
+
if mem > 450:
|
238 |
+
gc.collect()
|
239 |
+
logger.info("Memory cleanup triggered")
|
240 |
+
|
241 |
+
# ✅ NEW FUNCTION for enhanced output: test cases + model info + reason
|
242 |
+
def generate_test_cases_and_info(input_text):
|
243 |
+
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
|
244 |
+
return {
|
245 |
+
"model": model_name,
|
246 |
+
"algorithm": algorithm_used,
|
247 |
+
"reason": reason,
|
248 |
+
"test_cases": test_cases
|
249 |
+
}
|
250 |
+
|
251 |
+
# ✅ Explain why each algorithm is selected
|
252 |
+
def get_algorithm_reason(model_name):
|
253 |
+
if model_name == "microsoft/DialoGPT-small":
|
254 |
+
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
|
255 |
+
elif model_name == "distilgpt2":
|
256 |
+
return "Selected for its balance between performance and low memory usage. Ideal for small environments needing causal language modeling."
|
257 |
+
elif model_name == "gpt2":
|
258 |
+
return "Chosen for general-purpose text generation with moderate memory headroom."
|
259 |
+
elif model_name is None:
|
260 |
+
return "No model used due to insufficient memory. Rule-based template generation chosen instead."
|
261 |
+
else:
|
262 |
+
return "Model selected based on best tradeoff between memory usage and language generation capability."
|
requirements.txt
ADDED
Binary file (2.48 kB). View file
|
|