File size: 2,344 Bytes
52ecadc
62415ef
 
 
52ecadc
62415ef
52ecadc
62415ef
 
52ecadc
 
62415ef
52ecadc
62415ef
 
 
 
 
 
 
52ecadc
 
 
62415ef
 
 
 
 
 
 
52ecadc
 
 
62415ef
 
52ecadc
 
 
 
62415ef
 
 
 
 
 
52ecadc
 
62415ef
 
52ecadc
 
62415ef
52ecadc
62415ef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import openai  # Assuming you're using OpenAI's API
import requests
from bs4 import BeautifulSoup

# Function for chatbot response
def chatbot(input_text):
    # Implement a more advanced chatbot logic or integrate with a model
    response = f"Chatbot response: {input_text}"
    return response

# Function to generate responses using OpenAI API
def generate_openai_response(input_text):
    openai.api_key = "your-openai-api-key"  # Replace with your actual OpenAI API key
    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=input_text,
        max_tokens=150
    )
    return response.choices[0].text.strip()

# Function to scrape information from URLs
def scrape_url(url):
    try:
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')
        scrapped_data = soup.get_text()
        return scrapped_data.strip()
    except Exception as e:
        return f"Error: {e}"

# Function to analyze user-provided documents
def analyze_document(document):
    # Implement document analysis logic
    analysis_result = f"Analysis result: {document[:100]}..."  # Just an example, adjust as needed
    return analysis_result

# Function to execute code, equations, or scripts
def execute_code(input_code):
    try:
        exec_globals = {}
        exec(input_code, exec_globals)
        return exec_globals
    except Exception as e:
        return f"Execution error: {e}"

# Creating Gradio interfaces for each functionality
chatbot_interface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Custom Chatbot")
openai_interface = gr.Interface(fn=generate_openai_response, inputs="text", outputs="text", title="OpenAI API Response")
scrape_url_interface = gr.Interface(fn=scrape_url, inputs="text", outputs="text", title="Web Scraping")
analyze_document_interface = gr.Interface(fn=analyze_document, inputs="text", outputs="text", title="Document Analysis")
execute_code_interface = gr.Interface(fn=execute_code, inputs="text", outputs="json", title="Code Execution")

# Launching all interfaces together
gr.TabbedInterface([chatbot_interface, openai_interface, scrape_url_interface, analyze_document_interface, execute_code_interface], ["Chatbot", "OpenAI", "Web Scraping", "Document Analysis", "Code Execution"]).launch(share=True)