test / scoringModule.py
TKU410410103's picture
Upload 33 files
3f3bf60 verified
# ----- Imports -----
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
import pyarrow as pa
import librosa
import subprocess
import torchaudio
import pykakasi
from datasets import Dataset
from transformers import HubertForCTC, Wav2Vec2Processor, AutoTokenizer
from reazonspeech.nemo.asr import transcribe, audio_from_path, load_model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import difflib
# ----- Model Loading -----
kks = pykakasi.kakasi()
model = load_model()
processor = Wav2Vec2Processor.from_pretrained('TKU410410103/uniTKU-hubert-japanese-asr')
hubert = HubertForCTC.from_pretrained('TKU410410103/uniTKU-hubert-japanese-asr')
hubert.config.output_hidden_states=True
tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
# ----- Function Definitions -----
def convert_to_wav(input_path, output_path):
command = [
'ffmpeg',
'-i', input_path,
'-ar', '16000',
'-ac', '1',
'-f', 'wav',
output_path
]
try:
subprocess.run(command, check=True, capture_output=True)
except subprocess.CalledProcessError as e:
print("FFmpeg failed:")
print(e.stderr.decode('utf-8'))
raise e
def modified_filename(file_path):
base_name = file_path.rsplit('.', 1)[0]
extension = file_path.rsplit('.', 1)[1]
output_file = f"{base_name}1.{extension}"
return output_file
def acoustic_noise_suppression(input_wav_path, output_wav_path):
ans = pipeline(
Tasks.acoustic_noise_suppression,
model='damo/speech_frcrn_ans_cirm_16k')
result = ans(
input_wav_path,
output_path=output_wav_path)
return result
def detect_audio_features(audio_file, energy_threshold=0.1, amplitude_threshold=0.1):
# Load the audio file once
y, sr = librosa.load(audio_file, sr=None)
# Calculate frame energy
frame_length = int(0.025 * sr) # 25ms frame length
hop_length = int(0.010 * sr) # 10ms hop length
frames = librosa.util.frame(y, frame_length=frame_length, hop_length=hop_length)
energy = np.sum(np.square(frames), axis=0)
avg_energy = np.mean(energy)
# Calculate maximum amplitude
max_amplitude = np.max(np.abs(y))
# Print the results
print("Average Energy:", avg_energy)
print("Maximum Amplitude:", max_amplitude)
# Return the checks as a tuple
return (avg_energy > energy_threshold) and (max_amplitude > amplitude_threshold)
def process_waveforms(batch):
waveform, sample_rate = torchaudio.load(batch['audio_path'])
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
# 如果 waveform 是雙聲道,需要轉單聲道。
if waveform.size(0) > 1:
waveform = waveform.mean(dim=0)
# 讓 waveform的維度正確
if waveform.ndim > 1:
waveform = waveform.squeeze()
batch["speech_array"] = waveform
return batch
def asr(path):
audio = audio_from_path(path)
ret = transcribe(model, audio)
result = kks.convert(ret.text)
return result[0]['hira']
def get_most_similar(predicted_word):
correct_words = ['わたし', 'わたしたち', 'あなた', 'あのひと', 'あのかた', 'みなさん',
'せんせい', 'きょうし', 'がくせい', 'かいしゃいん','しゃいん',
'ぎんこういん', 'いしゃ', 'けんきゅうしゃ', 'エンジニア', 'だいがく',
'びょういん', 'でんき', 'だれ', 'どなた', '~さい', 'なんさい', 'おいくつ']
# 初始化最高相似度和對應的單字
highest_similarity = 0.0
most_similar_word = predicted_word
# 遍歷正確的單字列表,比較相似度
for word in correct_words:
# 使用SequenceMatcher計算相似度
similarity = difflib.SequenceMatcher(None, predicted_word, word).ratio()
# 更新最高相似度和最相似的單字
if similarity > highest_similarity:
highest_similarity = similarity
most_similar_word = word
print(f'most similar word: ', most_similar_word, 'highest_similarity: ', highest_similarity)
if highest_similarity < 0.2:
return '單字未被收納'
return most_similar_word
class BLSTMSpeechScoring(nn.Module):
def __init__(self, input_size=768, hidden_size=128, num_layers=1, output_size=1, embedding_dim=64, vocab_size=4000):
super(BLSTMSpeechScoring, self).__init__()
# 聲學特徵的 BLSTM
self.acoustic_blstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True, bidirectional=True)
# 語言特徵(字符)的 BLSTM
self.linguistic_blstm = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True, bidirectional=True)
# 字符的嵌入層
self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim)
# 處理 BLSTM 輸出的線性層,以匹配維度
self.acoustic_linear = nn.Linear(hidden_size * 2, hidden_size)
self.linguistic_linear = nn.Linear(hidden_size * 2, hidden_size)
# 串接後的最終線性層
self.final_linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, acoustic_input, linguistic_input):
# 聲學輸入通過 BLSTM
acoustic_output, _ = self.acoustic_blstm(acoustic_input)
# 將語言輸入嵌入並通過 BLSTM
embedded_chars = self.embedding(linguistic_input)
linguistic_output, _ = self.linguistic_blstm(embedded_chars)
# 線性層確保維度匹配
acoustic_features = self.acoustic_linear(acoustic_output)
linguistic_features = self.linguistic_linear(linguistic_output)
# 對兩輸出進行全局平均池化(GAP)
gap_acoustic = torch.mean(acoustic_features, dim=1)
gap_linguistic = torch.mean(linguistic_features, dim=1)
# 串接特徵並最終評分
concatenated_features = torch.cat((gap_acoustic, gap_linguistic), dim=1)
score = self.final_linear(concatenated_features)
return score
judge = 0.65
class Trainer:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def pred(self, acoustic_input, text):
self.model.eval()
with torch.no_grad():
encoded_input = self.tokenizer(text, padding=True, truncation=True, return_tensors="pt", max_length=100)
linguistic_input = encoded_input['input_ids']
outputs = self.model(acoustic_input, linguistic_input)
return outputs
def make_dataframe(audio_path):
row = []
text = asr(audio_path)
print(text)
row.append({'audio_path': audio_path, 'text': text})
df = pd.DataFrame(row)
return df
def get_acoustic_feature(batch):
with torch.no_grad():
processed_audios = processor(batch['speech_array'],
sampling_rate=16000,
return_tensors="pt",
padding=True,
truncation=True,
max_length=160000)
outputs = hubert(**processed_audios)
transformer_hidden_states = outputs.hidden_states[:]
# Stack transformer hidden states to have a new dimension for layers
stacked_hidden_states = torch.stack(transformer_hidden_states)
# Average across layers dimension (0) while keeping sequence_length
overall_avg_hidden_state = torch.mean(stacked_hidden_states, dim=0)
return overall_avg_hidden_state
# Model Loading and Initialization
blstm = BLSTMSpeechScoring()
model_save_path = "./BLSTMSpeechScoring_TKU.pth"
blstm.load_state_dict(torch.load(model_save_path))
blstm.eval()
trainer = Trainer(blstm, tokenizer)
def scoring(file_path):
converted_file_path = modified_filename(file_path)
convert_to_wav(input_path=file_path, output_path=converted_file_path)
output_file = modified_filename(converted_file_path)
acoustic_noise_suppression(input_wav_path=converted_file_path, output_wav_path=output_file) # output_file 降噪音檔
if(detect_audio_features(output_file)):
df = make_dataframe(output_file)
dataset = Dataset.from_pandas(df)
dataset_array = dataset.map(process_waveforms, remove_columns=['audio_path'])
acoustic_input = get_acoustic_feature(dataset_array)
text = list(df['text'])
similar_text = get_most_similar(text[0][:-1])
if similar_text == '單字未被收納':
return 0, similar_text
score = trainer.pred(acoustic_input, text[0])
score = 1 if score > judge else float(score)
print('score: ', score*100)
return score*100, similar_text
return -1, None