Spaces:
Runtime error
Runtime error
Commit
·
a531787
1
Parent(s):
c7943d0
cleanup
Browse files- Untitled.ipynb +0 -260
Untitled.ipynb
DELETED
|
@@ -1,260 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 4,
|
| 6 |
-
"id": "1e0cd6a7",
|
| 7 |
-
"metadata": {},
|
| 8 |
-
"outputs": [],
|
| 9 |
-
"source": [
|
| 10 |
-
"import sys\n",
|
| 11 |
-
"sys.path.insert(0,'..')"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"cell_type": "code",
|
| 16 |
-
"execution_count": 5,
|
| 17 |
-
"id": "ba81c2ba",
|
| 18 |
-
"metadata": {},
|
| 19 |
-
"outputs": [],
|
| 20 |
-
"source": [
|
| 21 |
-
"from scripts.transformer_prediction_interface import TabPFNClassifier"
|
| 22 |
-
]
|
| 23 |
-
},
|
| 24 |
-
{
|
| 25 |
-
"cell_type": "code",
|
| 26 |
-
"execution_count": 56,
|
| 27 |
-
"id": "0fe8a920",
|
| 28 |
-
"metadata": {},
|
| 29 |
-
"outputs": [
|
| 30 |
-
{
|
| 31 |
-
"name": "stdout",
|
| 32 |
-
"output_type": "stream",
|
| 33 |
-
"text": [
|
| 34 |
-
"/Users/samuelmueller/TabPFN/TabPFN\r\n"
|
| 35 |
-
]
|
| 36 |
-
}
|
| 37 |
-
],
|
| 38 |
-
"source": [
|
| 39 |
-
"!pwd"
|
| 40 |
-
]
|
| 41 |
-
},
|
| 42 |
-
{
|
| 43 |
-
"cell_type": "code",
|
| 44 |
-
"execution_count": 49,
|
| 45 |
-
"id": "fd08a53d",
|
| 46 |
-
"metadata": {},
|
| 47 |
-
"outputs": [
|
| 48 |
-
{
|
| 49 |
-
"name": "stdout",
|
| 50 |
-
"output_type": "stream",
|
| 51 |
-
"text": [
|
| 52 |
-
"Caching examples at: '/Users/samuelmueller/TabPFN/TabPFN/gradio_cached_examples/670/log.csv'\n"
|
| 53 |
-
]
|
| 54 |
-
},
|
| 55 |
-
{
|
| 56 |
-
"name": "stderr",
|
| 57 |
-
"output_type": "stream",
|
| 58 |
-
"text": [
|
| 59 |
-
"/Users/samuelmueller/opt/anaconda3/envs/TabPFN/lib/python3.7/site-packages/gradio/networking.py:59: ResourceWarning: unclosed <socket.socket fd=280, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('0.0.0.0', 0)>\n",
|
| 60 |
-
" s = socket.socket() # create a socket object\n",
|
| 61 |
-
"ResourceWarning: Enable tracemalloc to get the object allocation traceback\n",
|
| 62 |
-
"/Users/samuelmueller/opt/anaconda3/envs/TabPFN/lib/python3.7/site-packages/gradio/networking.py:59: ResourceWarning: unclosed <socket.socket fd=285, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('0.0.0.0', 0)>\n",
|
| 63 |
-
" s = socket.socket() # create a socket object\n",
|
| 64 |
-
"ResourceWarning: Enable tracemalloc to get the object allocation traceback\n"
|
| 65 |
-
]
|
| 66 |
-
},
|
| 67 |
-
{
|
| 68 |
-
"name": "stdout",
|
| 69 |
-
"output_type": "stream",
|
| 70 |
-
"text": [
|
| 71 |
-
"Running on local URL: http://127.0.0.1:7898/\n",
|
| 72 |
-
"\n",
|
| 73 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
| 74 |
-
]
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"data": {
|
| 78 |
-
"text/html": [
|
| 79 |
-
"<div><iframe src=\"http://127.0.0.1:7898/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 80 |
-
],
|
| 81 |
-
"text/plain": [
|
| 82 |
-
"<IPython.core.display.HTML object>"
|
| 83 |
-
]
|
| 84 |
-
},
|
| 85 |
-
"metadata": {},
|
| 86 |
-
"output_type": "display_data"
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"data": {
|
| 90 |
-
"text/plain": [
|
| 91 |
-
"(<gradio.routes.App at 0x7fa954c66a90>, 'http://127.0.0.1:7898/', None)"
|
| 92 |
-
]
|
| 93 |
-
},
|
| 94 |
-
"execution_count": 49,
|
| 95 |
-
"metadata": {},
|
| 96 |
-
"output_type": "execute_result"
|
| 97 |
-
}
|
| 98 |
-
],
|
| 99 |
-
"source": [
|
| 100 |
-
"import numpy as np\n",
|
| 101 |
-
"import pandas as pd\n",
|
| 102 |
-
"import torch\n",
|
| 103 |
-
"import gradio as gr\n",
|
| 104 |
-
"import openml\n",
|
| 105 |
-
"\n",
|
| 106 |
-
"\n",
|
| 107 |
-
"def compute(table: np.array):\n",
|
| 108 |
-
" vfunc = np.vectorize(lambda s: len(s))\n",
|
| 109 |
-
" non_empty_row_mask = (vfunc(table).sum(1) != 0)\n",
|
| 110 |
-
" print(table)\n",
|
| 111 |
-
" table = table[non_empty_row_mask]\n",
|
| 112 |
-
" empty_mask = table == ''\n",
|
| 113 |
-
" empty_inds = np.where(empty_mask)\n",
|
| 114 |
-
" assert np.all(empty_inds[1][0] == empty_inds[1])\n",
|
| 115 |
-
" y_column = empty_inds[1][0]\n",
|
| 116 |
-
" eval_lines = empty_inds[0]\n",
|
| 117 |
-
"\n",
|
| 118 |
-
" train_table = np.delete(table, eval_lines, axis=0)\n",
|
| 119 |
-
" eval_table = table[eval_lines]\n",
|
| 120 |
-
"\n",
|
| 121 |
-
" try:\n",
|
| 122 |
-
" x_train = torch.tensor(np.delete(train_table, y_column, axis=1).astype(np.float32))\n",
|
| 123 |
-
" x_eval = torch.tensor(np.delete(eval_table, y_column, axis=1).astype(np.float32))\n",
|
| 124 |
-
"\n",
|
| 125 |
-
" y_train = train_table[:, y_column]\n",
|
| 126 |
-
" except ValueError:\n",
|
| 127 |
-
" return \"Please only add numbers (to the inputs) or leave fields empty.\", None\n",
|
| 128 |
-
"\n",
|
| 129 |
-
" classifier = TabPFNClassifier(base_path='..', device='cpu')\n",
|
| 130 |
-
" classifier.fit(x_train, y_train)\n",
|
| 131 |
-
" y_eval, p_eval = classifier.predict(x_eval, return_winning_probability=True)\n",
|
| 132 |
-
" print(x_train, y_train, x_eval, y_eval)\n",
|
| 133 |
-
"\n",
|
| 134 |
-
" # print(file, type(file))\n",
|
| 135 |
-
" out_table = table.copy().astype(str)\n",
|
| 136 |
-
" out_table[eval_lines, y_column] = [f\"{y_e} (p={p_e:.2f})\" for y_e, p_e in zip(y_eval, p_eval)]\n",
|
| 137 |
-
" return None, out_table\n",
|
| 138 |
-
"\n",
|
| 139 |
-
"\n",
|
| 140 |
-
"def upload_file(file):\n",
|
| 141 |
-
" if file.name.endswith('.arff'):\n",
|
| 142 |
-
" dataset = openml.datasets.OpenMLDataset('t', 'test', data_file=file.name)\n",
|
| 143 |
-
" X_, _, categorical_indicator_, attribute_names_ = dataset.get_data(\n",
|
| 144 |
-
" dataset_format=\"array\"\n",
|
| 145 |
-
" )\n",
|
| 146 |
-
" return X_\n",
|
| 147 |
-
" elif file.name.endswith('.csv') or file.name.endswith('.data'):\n",
|
| 148 |
-
" df = pd.read_csv(file.name)\n",
|
| 149 |
-
" return df.to_numpy()\n",
|
| 150 |
-
"\n",
|
| 151 |
-
"\n",
|
| 152 |
-
"example = \\\n",
|
| 153 |
-
" [\n",
|
| 154 |
-
" [1, 2, 1],\n",
|
| 155 |
-
" [2, 1, 1],\n",
|
| 156 |
-
" [1, 1, 1],\n",
|
| 157 |
-
" [2, 2, 2],\n",
|
| 158 |
-
" [3, 4, 2],\n",
|
| 159 |
-
" [3, 2, 2],\n",
|
| 160 |
-
" [2, 3, '']\n",
|
| 161 |
-
" ]\n",
|
| 162 |
-
"\n",
|
| 163 |
-
"with gr.Blocks() as demo:\n",
|
| 164 |
-
" gr.Markdown(\"\"\"This demo allows you to play with the **TabPFN**.\n",
|
| 165 |
-
" You can either change the table manually (we have filled it with a toy benchmark, sum up to 3 has label 1 and over that label 2).\n",
|
| 166 |
-
" The network predicts fields you leave empty. Only one column can have empty entries that are predicted.\n",
|
| 167 |
-
" Please, provide everything but the label column as numeric values. It is ok to encode classes as integers.\n",
|
| 168 |
-
" \"\"\")\n",
|
| 169 |
-
" inp_table = gr.DataFrame(type='numpy', value=example, headers=[''] * 3)\n",
|
| 170 |
-
" inp_file = gr.File(\n",
|
| 171 |
-
" label='Drop either a .csv (without header, only numeric values for all but the labels) or a .arff file.')\n",
|
| 172 |
-
" btn = gr.Button(\"Predict Empty Table Cells\")\n",
|
| 173 |
-
"\n",
|
| 174 |
-
" inp_file.change(fn=upload_file, inputs=inp_file, outputs=inp_table)\n",
|
| 175 |
-
"\n",
|
| 176 |
-
" out_text = gr.Textbox()\n",
|
| 177 |
-
" out_table = gr.DataFrame()\n",
|
| 178 |
-
"\n",
|
| 179 |
-
" btn.click(fn=compute, inputs=inp_table, outputs=[out_text, out_table])\n",
|
| 180 |
-
" examples = gr.Examples(examples=['./iris.csv'],\n",
|
| 181 |
-
" inputs=[inp_file],\n",
|
| 182 |
-
" outputs=[inp_table],\n",
|
| 183 |
-
" fn=upload_file,\n",
|
| 184 |
-
" cache_examples=True)\n",
|
| 185 |
-
"\n",
|
| 186 |
-
"demo.launch()"
|
| 187 |
-
]
|
| 188 |
-
},
|
| 189 |
-
{
|
| 190 |
-
"cell_type": "code",
|
| 191 |
-
"execution_count": 52,
|
| 192 |
-
"id": "c4510232",
|
| 193 |
-
"metadata": {},
|
| 194 |
-
"outputs": [],
|
| 195 |
-
"source": [
|
| 196 |
-
"df = pd.DataFrame({'hi':[1,2,'j']})"
|
| 197 |
-
]
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"cell_type": "code",
|
| 201 |
-
"execution_count": 59,
|
| 202 |
-
"id": "2403f193",
|
| 203 |
-
"metadata": {},
|
| 204 |
-
"outputs": [
|
| 205 |
-
{
|
| 206 |
-
"data": {
|
| 207 |
-
"text/plain": [
|
| 208 |
-
"[[1], [2], ['j']]"
|
| 209 |
-
]
|
| 210 |
-
},
|
| 211 |
-
"execution_count": 59,
|
| 212 |
-
"metadata": {},
|
| 213 |
-
"output_type": "execute_result"
|
| 214 |
-
},
|
| 215 |
-
{
|
| 216 |
-
"name": "stderr",
|
| 217 |
-
"output_type": "stream",
|
| 218 |
-
"text": [
|
| 219 |
-
"sys:1: ResourceWarning: unclosed socket <zmq.Socket(zmq.PUSH) at 0x7fa9569da910>\n",
|
| 220 |
-
"ResourceWarning: Enable tracemalloc to get the object allocation traceback\n"
|
| 221 |
-
]
|
| 222 |
-
}
|
| 223 |
-
],
|
| 224 |
-
"source": [
|
| 225 |
-
"df.to_numpy().tolist()"
|
| 226 |
-
]
|
| 227 |
-
},
|
| 228 |
-
{
|
| 229 |
-
"cell_type": "code",
|
| 230 |
-
"execution_count": null,
|
| 231 |
-
"id": "adf1a91c",
|
| 232 |
-
"metadata": {},
|
| 233 |
-
"outputs": [],
|
| 234 |
-
"source": [
|
| 235 |
-
"k"
|
| 236 |
-
]
|
| 237 |
-
}
|
| 238 |
-
],
|
| 239 |
-
"metadata": {
|
| 240 |
-
"kernelspec": {
|
| 241 |
-
"display_name": "Python 3 (ipykernel)",
|
| 242 |
-
"language": "python",
|
| 243 |
-
"name": "python3"
|
| 244 |
-
},
|
| 245 |
-
"language_info": {
|
| 246 |
-
"codemirror_mode": {
|
| 247 |
-
"name": "ipython",
|
| 248 |
-
"version": 3
|
| 249 |
-
},
|
| 250 |
-
"file_extension": ".py",
|
| 251 |
-
"mimetype": "text/x-python",
|
| 252 |
-
"name": "python",
|
| 253 |
-
"nbconvert_exporter": "python",
|
| 254 |
-
"pygments_lexer": "ipython3",
|
| 255 |
-
"version": "3.7.13"
|
| 256 |
-
}
|
| 257 |
-
},
|
| 258 |
-
"nbformat": 4,
|
| 259 |
-
"nbformat_minor": 5
|
| 260 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|