Archisman Karmakar
commited on
Commit
·
19dcfe5
1
Parent(s):
e999632
2025.03.25.post1
Browse files- .github/workflows/deploy_to_HF_space_DIRECT.yml +5 -5
- .github/workflows/dfploy_to_HF_space_DOCKER +2 -2
- app_main_hf.py +16 -2
- dashboard.py +103 -3
- data_collection_form/__init__.py +0 -0
- data_collection_form/data_collector.py +387 -0
- data_collection_form/hmv_cfg_base_dcl/__init__.py +0 -0
- data_collection_form/hmv_cfg_base_dcl/imports.py +25 -0
- emotionMoodtag_analysis/config/stage2_models.json +2 -2
- poetry.lock +19 -25
- pyproject.toml +1 -1
- pyprojectOLD.toml +2 -1
- requirements.txt +6 -6
- sentimentPolarity_analysis/config/stage1_models.json +4 -4
- stacked_stacking_stages/__init__.py +0 -0
- stacked_stacking_stages/hmv_cfg_base_stk_stg/__init__.py +0 -0
- stacked_stacking_stages/hmv_cfg_base_stk_stg/imports.py +25 -0
- stacked_stacking_stages/stacking_stages.py +774 -0
- transformation_and_Normalization/config/stage3_models.json +3 -3
- transformation_and_Normalization/transformationNormalization_main.py +52 -47
.github/workflows/deploy_to_HF_space_DIRECT.yml
CHANGED
|
@@ -76,8 +76,8 @@ jobs:
|
|
| 76 |
env:
|
| 77 |
HF_READ_WRITE_TOKEN: ${{ secrets.HF_READ_WRITE_TOKEN }}
|
| 78 |
run: |
|
| 79 |
-
git remote add space https://huggingface.co/spaces/
|
| 80 |
-
git push --force https://${{ secrets.HF_USERNAME }}:${{ secrets.HF_READ_WRITE_TOKEN }}@huggingface.co/spaces/
|
| 81 |
|
| 82 |
|
| 83 |
|
|
@@ -214,7 +214,7 @@ jobs:
|
|
| 214 |
|
| 215 |
# - name: Clone Hugging Face Space repository
|
| 216 |
# run: |
|
| 217 |
-
# git clone https://HF_USERNAME:${{ secrets.HF_TOKEN }}@huggingface.co/spaces/
|
| 218 |
|
| 219 |
# - name: Copy repository files to HF Space
|
| 220 |
# run: |
|
|
@@ -227,7 +227,7 @@ jobs:
|
|
| 227 |
# # run: |
|
| 228 |
# # cd hf-space
|
| 229 |
# # git init
|
| 230 |
-
# # git remote add origin https://huggingface.co/spaces/
|
| 231 |
# # git checkout -b main
|
| 232 |
# # git add .
|
| 233 |
# # git commit -m "Update deployment via GitHub Actions"
|
|
@@ -240,7 +240,7 @@ jobs:
|
|
| 240 |
# git init
|
| 241 |
# # Remove existing origin if it exists
|
| 242 |
# git remote remove origin || true
|
| 243 |
-
# git remote add origin https://huggingface.co/spaces/
|
| 244 |
# git checkout -b main
|
| 245 |
# git add .
|
| 246 |
# git commit -m "Update deployment via GitHub Actions"
|
|
|
|
| 76 |
env:
|
| 77 |
HF_READ_WRITE_TOKEN: ${{ secrets.HF_READ_WRITE_TOKEN }}
|
| 78 |
run: |
|
| 79 |
+
git remote add space https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder
|
| 80 |
+
git push --force https://${{ secrets.HF_USERNAME }}:${{ secrets.HF_READ_WRITE_TOKEN }}@huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder
|
| 81 |
|
| 82 |
|
| 83 |
|
|
|
|
| 214 |
|
| 215 |
# - name: Clone Hugging Face Space repository
|
| 216 |
# run: |
|
| 217 |
+
# git clone https://HF_USERNAME:${{ secrets.HF_TOKEN }}@huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder hf-space
|
| 218 |
|
| 219 |
# - name: Copy repository files to HF Space
|
| 220 |
# run: |
|
|
|
|
| 227 |
# # run: |
|
| 228 |
# # cd hf-space
|
| 229 |
# # git init
|
| 230 |
+
# # git remote add origin https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder
|
| 231 |
# # git checkout -b main
|
| 232 |
# # git add .
|
| 233 |
# # git commit -m "Update deployment via GitHub Actions"
|
|
|
|
| 240 |
# git init
|
| 241 |
# # Remove existing origin if it exists
|
| 242 |
# git remote remove origin || true
|
| 243 |
+
# git remote add origin https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder
|
| 244 |
# git checkout -b main
|
| 245 |
# git add .
|
| 246 |
# git commit -m "Update deployment via GitHub Actions"
|
.github/workflows/dfploy_to_HF_space_DOCKER
CHANGED
|
@@ -28,7 +28,7 @@ jobs:
|
|
| 28 |
|
| 29 |
|
| 30 |
- name: Build the Docker image
|
| 31 |
-
run: docker build -t huggingface.co/spaces/
|
| 32 |
|
| 33 |
- name: Push the Docker image to Hugging Face
|
| 34 |
-
run: docker push huggingface.co/spaces/
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
- name: Build the Docker image
|
| 31 |
+
run: docker build -t huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder .
|
| 32 |
|
| 33 |
- name: Push the Docker image to Hugging Face
|
| 34 |
+
run: docker push huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder
|
app_main_hf.py
CHANGED
|
@@ -50,6 +50,8 @@ from emotionMoodtag_analysis.emotion_analysis_main import show_emotion_analysis
|
|
| 50 |
from sentimentPolarity_analysis.sentiment_analysis_main import show_sentiment_analysis
|
| 51 |
from transformation_and_Normalization.transformationNormalization_main import transform_and_normalize
|
| 52 |
from dashboard import show_dashboard
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
# from text_transformation import show_text_transformation
|
|
@@ -138,8 +140,8 @@ def main():
|
|
| 138 |
|
| 139 |
selection = option_menu(
|
| 140 |
menu_title=None, # No title for a sleek look
|
| 141 |
-
options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"],
|
| 142 |
-
icons=['house', 'diagram-3', "snow", 'activity'],
|
| 143 |
menu_icon="cast", # Main menu icon
|
| 144 |
default_index=0, # Highlight the first option
|
| 145 |
orientation="vertical",
|
|
@@ -210,6 +212,18 @@ def main():
|
|
| 210 |
transform_and_normalize()
|
| 211 |
# st.write("This section is under development.")
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
|
| 215 |
# st.sidebar.title("Navigation")
|
|
|
|
| 50 |
from sentimentPolarity_analysis.sentiment_analysis_main import show_sentiment_analysis
|
| 51 |
from transformation_and_Normalization.transformationNormalization_main import transform_and_normalize
|
| 52 |
from dashboard import show_dashboard
|
| 53 |
+
from stacked_stacking_stages.stacking_stages import show_stacking_stages
|
| 54 |
+
from data_collection_form.data_collector import show_data_collector
|
| 55 |
|
| 56 |
|
| 57 |
# from text_transformation import show_text_transformation
|
|
|
|
| 140 |
|
| 141 |
selection = option_menu(
|
| 142 |
menu_title=None, # No title for a sleek look
|
| 143 |
+
options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization", "Stacked Stages", "Data Correction & Collection"],
|
| 144 |
+
icons=['house', 'diagram-3', "snow", 'activity', 'collection', 'database-up'],
|
| 145 |
menu_icon="cast", # Main menu icon
|
| 146 |
default_index=0, # Highlight the first option
|
| 147 |
orientation="vertical",
|
|
|
|
| 212 |
transform_and_normalize()
|
| 213 |
# st.write("This section is under development.")
|
| 214 |
|
| 215 |
+
elif selection == "Stacked Stages":
|
| 216 |
+
# st.title("Stacked Stages")
|
| 217 |
+
# st.cache_resource.clear()
|
| 218 |
+
# free_memory()
|
| 219 |
+
show_stacking_stages()
|
| 220 |
+
|
| 221 |
+
elif selection == "Data Correction & Collection":
|
| 222 |
+
# st.title("Data Correction & Collection")
|
| 223 |
+
# st.cache_resource.clear()
|
| 224 |
+
# free_memory()
|
| 225 |
+
show_data_collector()
|
| 226 |
+
|
| 227 |
|
| 228 |
|
| 229 |
# st.sidebar.title("Navigation")
|
dashboard.py
CHANGED
|
@@ -44,8 +44,102 @@ def free_memory():
|
|
| 44 |
print(f"❌ Cache cleanup error: {e}")
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def create_footer():
|
| 48 |
-
st.divider()
|
|
|
|
| 49 |
|
| 50 |
# 🛠️ Layout using Streamlit columns
|
| 51 |
col1, col2, col3 = st.columns([1, 1, 1])
|
|
@@ -90,14 +184,20 @@ def show_dashboard():
|
|
| 90 |
st.write("""
|
| 91 |
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
|
| 92 |
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
|
| 93 |
-
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/
|
| 94 |
- Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
|
| 95 |
- Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
|
| 96 |
-
- Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/
|
| 97 |
""")
|
| 98 |
|
| 99 |
create_footer()
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def __main__():
|
| 103 |
show_dashboard()
|
|
|
|
| 44 |
print(f"❌ Cache cleanup error: {e}")
|
| 45 |
|
| 46 |
|
| 47 |
+
def create_sample_example1():
|
| 48 |
+
st.write("""
|
| 49 |
+
## Sample Example 1
|
| 50 |
+
""")
|
| 51 |
+
graph = """
|
| 52 |
+
digraph {
|
| 53 |
+
// Global graph settings with explicit DPI
|
| 54 |
+
graph [bgcolor="white", rankdir=TB, splines=true, nodesep=0.8, ranksep=0.8];
|
| 55 |
+
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
|
| 56 |
+
|
| 57 |
+
// Define nodes with custom colors
|
| 58 |
+
Input [label="Input:\nbruh, floods in Kerala, rescue ops non-stop 🚁", fillcolor="#ffe6de", fontcolor="#000000"];
|
| 59 |
+
Output [label="Output:\nBrother, the floods in Kerala are severe,\nand rescue operations are ongoing continuously.", fillcolor="#ffe6de", fontcolor="#000000"];
|
| 60 |
+
Sentiment [label="Sentiment:\nNEUTRAL", fillcolor="#ecdeff", fontcolor="black"];
|
| 61 |
+
|
| 62 |
+
// Emotion nodes with a uniform style
|
| 63 |
+
Anger [label="Anger: 0.080178231", fillcolor="#deffe1", fontcolor="black"];
|
| 64 |
+
Disgust [label="Disgust: 0.015257259", fillcolor="#deffe1", fontcolor="black"];
|
| 65 |
+
Fear [label="Fear: 0.601871967", fillcolor="#deffe1", fontcolor="black"];
|
| 66 |
+
Joy [label="Joy: 0.00410547", fillcolor="#deffe1", fontcolor="black"];
|
| 67 |
+
NeutralE [label="Neutral: 0.0341026", fillcolor="#deffe1", fontcolor="black"];
|
| 68 |
+
Sadness [label="Sadness: 0.245294735", fillcolor="#deffe1", fontcolor="black"];
|
| 69 |
+
Surprise [label="Surprise: 0.019189769", fillcolor="#deffe1", fontcolor="black"];
|
| 70 |
+
|
| 71 |
+
// Define edges with a consistent style
|
| 72 |
+
edge [color="#7a7a7a", penwidth=3];
|
| 73 |
+
|
| 74 |
+
// Establish the tree structure
|
| 75 |
+
Input -> Output;
|
| 76 |
+
Input -> Sentiment;
|
| 77 |
+
Sentiment -> Anger;
|
| 78 |
+
Sentiment -> Disgust;
|
| 79 |
+
Sentiment -> Fear;
|
| 80 |
+
Sentiment -> Joy;
|
| 81 |
+
Sentiment -> NeutralE;
|
| 82 |
+
Sentiment -> Sadness;
|
| 83 |
+
Sentiment -> Surprise;
|
| 84 |
+
}
|
| 85 |
+
"""
|
| 86 |
+
st.graphviz_chart(graph)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def create_sample_example2():
|
| 90 |
+
st.write("""
|
| 91 |
+
## Sample Example 2
|
| 92 |
+
""")
|
| 93 |
+
graph = """
|
| 94 |
+
digraph {
|
| 95 |
+
// Global graph settings
|
| 96 |
+
graph [bgcolor="white", rankdir=TB, splines=true, nodesep=0.8, ranksep=0.8];
|
| 97 |
+
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=9, margin="0.15,0.1"];
|
| 98 |
+
|
| 99 |
+
// Define nodes with custom colors
|
| 100 |
+
Input [label="Input:\nu rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t", fillcolor="#ffe6de", fontcolor="black"];
|
| 101 |
+
Output [label="Output:\nyou really think all that talk makes you tough lol when i step up you are not going to say anything", fillcolor="#ffe6de", fontcolor="black"];
|
| 102 |
+
Sentiment [label="Sentiment:\nNEGATIVE", fillcolor="#ecdeff", fontcolor="black"];
|
| 103 |
+
|
| 104 |
+
// Emotion nodes with a uniform style
|
| 105 |
+
Anger [label="Anger: 0.14403291", fillcolor="#deffe1", fontcolor="black"];
|
| 106 |
+
Disgust [label="Disgust: 0.039282672", fillcolor="#deffe1", fontcolor="black"];
|
| 107 |
+
Fear [label="Fear: 0.014349542", fillcolor="#deffe1", fontcolor="black"];
|
| 108 |
+
Joy [label="Joy: 0.048965044", fillcolor="#deffe1", fontcolor="black"];
|
| 109 |
+
NeutralE [label="Neutral: 0.494852662", fillcolor="#deffe1", fontcolor="black"];
|
| 110 |
+
Sadness [label="Sadness: 0.021111647", fillcolor="#deffe1", fontcolor="black"];
|
| 111 |
+
Surprise [label="Surprise: 0.237405464", fillcolor="#deffe1", fontcolor="black"];
|
| 112 |
+
|
| 113 |
+
// Define edges with a consistent style
|
| 114 |
+
edge [color="#7a7a7a", penwidth=3];
|
| 115 |
+
|
| 116 |
+
// Establish the tree structure
|
| 117 |
+
Input -> Output;
|
| 118 |
+
Input -> Sentiment;
|
| 119 |
+
Sentiment -> Anger;
|
| 120 |
+
Sentiment -> Disgust;
|
| 121 |
+
Sentiment -> Fear;
|
| 122 |
+
Sentiment -> Joy;
|
| 123 |
+
Sentiment -> NeutralE;
|
| 124 |
+
Sentiment -> Sadness;
|
| 125 |
+
Sentiment -> Surprise;
|
| 126 |
+
}
|
| 127 |
+
"""
|
| 128 |
+
st.graphviz_chart(graph)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def create_project_overview():
|
| 132 |
+
# st.divider()
|
| 133 |
+
st.markdown("## Project Overview")
|
| 134 |
+
st.write(f"""
|
| 135 |
+
Tachygraphy—originally developed to expedite writing—has evolved over centuries. In the 1990s, it reappeared as micro-text, driving faster communication on social media with characteristics like 'Anytime, Anyplace, Anybody, and Anything (4A)'. This project focuses on the analysis and normalization of micro-text, which is a prevalent form of informal communication today. It aims to enhance Natural Language Processing (NLP) tasks by standardizing micro-text for better sentiment analysis, emotion analysis, data extraction and normalization to understandable form aka. 4A message decoding as primary objective.
|
| 136 |
+
"""
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
def create_footer():
|
| 141 |
+
# st.divider()
|
| 142 |
+
st.markdown("## About Us")
|
| 143 |
|
| 144 |
# 🛠️ Layout using Streamlit columns
|
| 145 |
col1, col2, col3 = st.columns([1, 1, 1])
|
|
|
|
| 184 |
st.write("""
|
| 185 |
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
|
| 186 |
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
|
| 187 |
+
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25)
|
| 188 |
- Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
|
| 189 |
- Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
|
| 190 |
+
- Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
|
| 191 |
""")
|
| 192 |
|
| 193 |
create_footer()
|
| 194 |
|
| 195 |
+
create_project_overview()
|
| 196 |
+
|
| 197 |
+
create_sample_example1()
|
| 198 |
+
|
| 199 |
+
# create_sample_example2()
|
| 200 |
+
|
| 201 |
|
| 202 |
def __main__():
|
| 203 |
show_dashboard()
|
data_collection_form/__init__.py
ADDED
|
File without changes
|
data_collection_form/data_collector.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import shutil
|
| 2 |
+
from transformers.utils.hub import TRANSFORMERS_CACHE
|
| 3 |
+
import torch
|
| 4 |
+
import time
|
| 5 |
+
import joblib
|
| 6 |
+
import importlib.util
|
| 7 |
+
from imports import *
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import time
|
| 11 |
+
import uuid
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
# import psycopg2
|
| 16 |
+
from supabase import create_client, Client
|
| 17 |
+
from datetime import datetime, timezone
|
| 18 |
+
from collections import OrderedDict
|
| 19 |
+
|
| 20 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
| 21 |
+
|
| 22 |
+
env_path = os.path.join(os.path.dirname(__file__),
|
| 23 |
+
"..", ".devcontainer", ".env")
|
| 24 |
+
|
| 25 |
+
# from transformers.utils import move_cache_to_trash
|
| 26 |
+
# from huggingface_hub import delete_cache
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# from hmv_cfg_base_stage1.model1 import load_model as load_model1
|
| 30 |
+
# from hmv_cfg_base_stage1.model1 import predict as predict1
|
| 31 |
+
|
| 32 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 33 |
+
CONFIG_STAGE1 = os.path.join(BASE_DIR, "..", "sentimentPolarity_analysis", "config", "stage1_models.json")
|
| 34 |
+
CONFIG_STAGE2 = os.path.join(BASE_DIR, "..", "emotionMoodtag_analysis", "config", "stage2_models.json")
|
| 35 |
+
CONFIG_STAGE3 = os.path.join(BASE_DIR, "..", "transformation_and_Normalization", "config", "stage3_models.json")
|
| 36 |
+
LOADERS_STAGE_COLLECTOR = os.path.join(BASE_DIR, "hmv_cfg_base_dlc")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
EMOTION_MOODTAG_LABELS = [
|
| 40 |
+
"anger", "disgust", "fear", "joy", "neutral",
|
| 41 |
+
"sadness", "surprise"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
SENTIMENT_POLARITY_LABELS = [
|
| 45 |
+
"negative", "neutral", "positive"
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
current_model = None
|
| 50 |
+
current_tokenizer = None
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Enabling Resource caching
|
| 54 |
+
|
| 55 |
+
# Load environment variables from .env
|
| 56 |
+
load_dotenv()
|
| 57 |
+
|
| 58 |
+
# @st.cache_resource
|
| 59 |
+
# DATABASE_URL = os.environ.get("DATABASE_URL")
|
| 60 |
+
|
| 61 |
+
# def get_connection():
|
| 62 |
+
# # """Establish a connection to the database."""
|
| 63 |
+
# # return psycopg2.connect(os.environ.get("DATABASE_URL"))
|
| 64 |
+
# supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("anon_key"))
|
| 65 |
+
# return supabase
|
| 66 |
+
|
| 67 |
+
# @st.cache_resource
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def load_model_config1():
|
| 71 |
+
with open(CONFIG_STAGE1, "r") as f:
|
| 72 |
+
model_data = json.load(f)
|
| 73 |
+
|
| 74 |
+
# Extract names for dropdown
|
| 75 |
+
# model_options is a dict mapping model name to its config
|
| 76 |
+
model_options = {v["name"]: v for v in model_data.values()}
|
| 77 |
+
|
| 78 |
+
# Create an OrderedDict and insert a default option at the beginning.
|
| 79 |
+
default_option = "--Select the model used for inference (if applicable)--"
|
| 80 |
+
model_options_with_default = OrderedDict()
|
| 81 |
+
model_options_with_default[default_option] = None # or any placeholder value
|
| 82 |
+
# Add the rest of the options
|
| 83 |
+
for key, value in model_options.items():
|
| 84 |
+
model_options_with_default[key] = value
|
| 85 |
+
|
| 86 |
+
return model_data, model_options_with_default
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
MODEL_DATA1, MODEL_OPTIONS1 = load_model_config1()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def load_model_config2():
|
| 93 |
+
with open(CONFIG_STAGE2, "r") as f:
|
| 94 |
+
model_data = json.load(f)
|
| 95 |
+
|
| 96 |
+
# Extract names for dropdown
|
| 97 |
+
# model_options is a dict mapping model name to its config
|
| 98 |
+
model_options = {v["name"]: v for v in model_data.values()}
|
| 99 |
+
|
| 100 |
+
# Create an OrderedDict and insert a default option at the beginning.
|
| 101 |
+
default_option = "--Select the model used for inference (if applicable)--"
|
| 102 |
+
model_options_with_default = OrderedDict()
|
| 103 |
+
model_options_with_default[default_option] = None # or any placeholder value
|
| 104 |
+
# Add the rest of the options
|
| 105 |
+
for key, value in model_options.items():
|
| 106 |
+
model_options_with_default[key] = value
|
| 107 |
+
|
| 108 |
+
return model_data, model_options_with_default
|
| 109 |
+
|
| 110 |
+
MODEL_DATA2, MODEL_OPTIONS2 = load_model_config2()
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def load_model_config3():
|
| 114 |
+
with open(CONFIG_STAGE3, "r") as f:
|
| 115 |
+
model_data = json.load(f)
|
| 116 |
+
|
| 117 |
+
# Extract names for dropdown
|
| 118 |
+
# model_options is a dict mapping model name to its config
|
| 119 |
+
model_options = {v["name"]: v for v in model_data.values()}
|
| 120 |
+
|
| 121 |
+
# Create an OrderedDict and insert a default option at the beginning.
|
| 122 |
+
default_option = "--Select the model used for inference (if applicable)--"
|
| 123 |
+
model_options_with_default = OrderedDict()
|
| 124 |
+
model_options_with_default[default_option] = None # or any placeholder value
|
| 125 |
+
# Add the rest of the options
|
| 126 |
+
for key, value in model_options.items():
|
| 127 |
+
model_options_with_default[key] = value
|
| 128 |
+
|
| 129 |
+
return model_data, model_options_with_default
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
MODEL_DATA3, MODEL_OPTIONS3 = load_model_config3()
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# ✅ Dynamically Import Model Functions
|
| 136 |
+
def import_from_module(module_name, function_name):
|
| 137 |
+
try:
|
| 138 |
+
module = importlib.import_module(module_name)
|
| 139 |
+
return getattr(module, function_name)
|
| 140 |
+
except (ModuleNotFoundError, AttributeError) as e:
|
| 141 |
+
st.error(f"❌ Import Error: {e}")
|
| 142 |
+
return None
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def free_memory():
|
| 146 |
+
# """Free up CPU & GPU memory before loading a new model."""
|
| 147 |
+
global current_model, current_tokenizer
|
| 148 |
+
|
| 149 |
+
if current_model is not None:
|
| 150 |
+
del current_model # Delete the existing model
|
| 151 |
+
current_model = None # Reset reference
|
| 152 |
+
|
| 153 |
+
if current_tokenizer is not None:
|
| 154 |
+
del current_tokenizer # Delete the tokenizer
|
| 155 |
+
current_tokenizer = None
|
| 156 |
+
|
| 157 |
+
gc.collect() # Force garbage collection for CPU memory
|
| 158 |
+
|
| 159 |
+
if torch.cuda.is_available():
|
| 160 |
+
torch.cuda.empty_cache() # Free GPU memory
|
| 161 |
+
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
|
| 162 |
+
|
| 163 |
+
# If running on CPU, reclaim memory using OS-level commands
|
| 164 |
+
try:
|
| 165 |
+
if torch.cuda.is_available() is False:
|
| 166 |
+
psutil.virtual_memory() # Refresh memory stats
|
| 167 |
+
except Exception as e:
|
| 168 |
+
print(f"Memory cleanup error: {e}")
|
| 169 |
+
|
| 170 |
+
# Delete cached Hugging Face models
|
| 171 |
+
try:
|
| 172 |
+
cache_dir = TRANSFORMERS_CACHE
|
| 173 |
+
if os.path.exists(cache_dir):
|
| 174 |
+
shutil.rmtree(cache_dir)
|
| 175 |
+
print("Cache cleared!")
|
| 176 |
+
except Exception as e:
|
| 177 |
+
print(f"❌ Cache cleanup error: {e}")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def disable_ui():
|
| 181 |
+
st.components.v1.html(
|
| 182 |
+
"""
|
| 183 |
+
<style>
|
| 184 |
+
#ui-disable-overlay {
|
| 185 |
+
position: fixed;
|
| 186 |
+
top: 0;
|
| 187 |
+
left: 0;
|
| 188 |
+
width: 100vw;
|
| 189 |
+
height: 100vh;
|
| 190 |
+
background-color: rgba(200, 200, 200, 0.5);
|
| 191 |
+
z-index: 9999;
|
| 192 |
+
}
|
| 193 |
+
</style>
|
| 194 |
+
<div id="ui-disable-overlay"></div>
|
| 195 |
+
""",
|
| 196 |
+
height=0,
|
| 197 |
+
scrolling=False
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def enable_ui():
|
| 202 |
+
st.components.v1.html(
|
| 203 |
+
"""
|
| 204 |
+
<script>
|
| 205 |
+
var overlay = document.getElementById("ui-disable-overlay");
|
| 206 |
+
if (overlay) {
|
| 207 |
+
overlay.parentNode.removeChild(overlay);
|
| 208 |
+
}
|
| 209 |
+
</script>
|
| 210 |
+
""",
|
| 211 |
+
height=0,
|
| 212 |
+
scrolling=False
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Function to increment progress dynamically
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def get_env_variable(var_name):
|
| 219 |
+
# Try os.environ first (this covers local development and HF Spaces)
|
| 220 |
+
value = os.environ.get(var_name)
|
| 221 |
+
if value is None:
|
| 222 |
+
# Fall back to st.secrets if available (e.g., on Streamlit Cloud)
|
| 223 |
+
try:
|
| 224 |
+
value = st.secrets[var_name]
|
| 225 |
+
except KeyError:
|
| 226 |
+
value = None
|
| 227 |
+
return value
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def show_data_collector():
|
| 231 |
+
st.title("Data Correction & Collection Page")
|
| 232 |
+
|
| 233 |
+
st.error("New API keys are coming in Q2 2025, May 1st, old API authentication will be deprecated and blocked by PostgREST.")
|
| 234 |
+
st.warning(
|
| 235 |
+
"This page is running in test mode, please be careful with your data.")
|
| 236 |
+
st.error("The database is running in debug log mode, please be careful with your data.")
|
| 237 |
+
|
| 238 |
+
with st.form("feedback_form", clear_on_submit=True, border=False):
|
| 239 |
+
st.write("### Data Collection Form")
|
| 240 |
+
st.write(
|
| 241 |
+
"#### If the predictions generated are wrong, please provide feedback to help improve the model.")
|
| 242 |
+
|
| 243 |
+
# Model selection dropdown for Stage 3
|
| 244 |
+
model_names3 = list(MODEL_OPTIONS3.keys())
|
| 245 |
+
selected_model3 = st.selectbox(
|
| 246 |
+
"Choose a model:", model_names3, key="selected_model_stage3"
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# Text Feedback Inputs
|
| 250 |
+
col1, col2 = st.columns(2)
|
| 251 |
+
with col1:
|
| 252 |
+
feedback = st.text_input(
|
| 253 |
+
"Enter the correct expanded standard formal English text:",
|
| 254 |
+
key="feedback_input"
|
| 255 |
+
)
|
| 256 |
+
with col2:
|
| 257 |
+
feedback2 = st.text_input(
|
| 258 |
+
"Enter any one of the wrongly predicted text:",
|
| 259 |
+
key="feedback_input2"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
st.warning(
|
| 263 |
+
"The correct slider is for the probability of actual label and wrong slider is the probability predicted by any model which is wrong for that label.")
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
st.write("#### Sentiment Polarity Feedback (Select values between 0 and 1)")
|
| 268 |
+
SENTIMENT_POLARITY_LABELS = ["negative", "neutral", "positive"]
|
| 269 |
+
|
| 270 |
+
model_names1 = list(MODEL_OPTIONS1.keys())
|
| 271 |
+
selected_model1 = st.selectbox(
|
| 272 |
+
"Choose a model:", model_names1, key="selected_model_stage1"
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
sentiment_feedback = {}
|
| 276 |
+
# For sentiment, we have 3 labels so we can place them in one row.
|
| 277 |
+
sentiment_cols = st.columns(len(SENTIMENT_POLARITY_LABELS))
|
| 278 |
+
for idx, label in enumerate(SENTIMENT_POLARITY_LABELS):
|
| 279 |
+
with sentiment_cols[idx]:
|
| 280 |
+
st.write(f"**{label.capitalize()}**")
|
| 281 |
+
# Create two subcolumns for "Correct" and "Wrong"
|
| 282 |
+
subcol_correct, subcol_wrong = st.columns(2)
|
| 283 |
+
with subcol_correct:
|
| 284 |
+
correct_value = st.slider(
|
| 285 |
+
"Correct",
|
| 286 |
+
min_value=0.0,
|
| 287 |
+
max_value=1.0,
|
| 288 |
+
value=0.33, # default value
|
| 289 |
+
step=0.01,
|
| 290 |
+
format="%.2f",
|
| 291 |
+
key=f"sentiment_{label}_correct"
|
| 292 |
+
)
|
| 293 |
+
with subcol_wrong:
|
| 294 |
+
wrong_value = st.slider(
|
| 295 |
+
"Wrong",
|
| 296 |
+
min_value=0.0,
|
| 297 |
+
max_value=1.0,
|
| 298 |
+
value=0.0, # default value
|
| 299 |
+
step=0.01,
|
| 300 |
+
format="%.2f",
|
| 301 |
+
key=f"sentiment_{label}_wrong"
|
| 302 |
+
)
|
| 303 |
+
sentiment_feedback[label] = {"correct": correct_value, "wrong": wrong_value}
|
| 304 |
+
|
| 305 |
+
# st.write("**Collected Sentiment Feedback:**")
|
| 306 |
+
# st.write(sentiment_feedback)
|
| 307 |
+
|
| 308 |
+
# ---------------------------
|
| 309 |
+
# Emotion Feedback
|
| 310 |
+
# ---------------------------
|
| 311 |
+
st.write("#### Emotion Feedback (Select values between 0 and 1)")
|
| 312 |
+
EMOTION_MOODTAG_LABELS = [
|
| 313 |
+
"anger", "disgust", "fear", "joy", "neutral",
|
| 314 |
+
"sadness", "surprise"
|
| 315 |
+
]
|
| 316 |
+
|
| 317 |
+
model_names2 = list(MODEL_OPTIONS2.keys())
|
| 318 |
+
selected_model2 = st.selectbox(
|
| 319 |
+
"Choose a model:", model_names2, key="selected_model_stage2"
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
emotion_feedback = {}
|
| 323 |
+
max_cols = 3 # Maximum number of emotion labels in one row
|
| 324 |
+
num_labels = len(EMOTION_MOODTAG_LABELS)
|
| 325 |
+
num_rows = math.ceil(num_labels / max_cols)
|
| 326 |
+
|
| 327 |
+
for row in range(num_rows):
|
| 328 |
+
# Get labels for this row.
|
| 329 |
+
row_labels = EMOTION_MOODTAG_LABELS[row * max_cols:(row + 1) * max_cols]
|
| 330 |
+
# Create main columns for each label in this row.
|
| 331 |
+
main_cols = st.columns(len(row_labels))
|
| 332 |
+
for idx, label in enumerate(row_labels):
|
| 333 |
+
with main_cols[idx]:
|
| 334 |
+
st.write(f"**{label.capitalize()}**")
|
| 335 |
+
# Create two subcolumns for correct and wrong values.
|
| 336 |
+
subcol_correct, subcol_wrong = st.columns(2)
|
| 337 |
+
with subcol_correct:
|
| 338 |
+
correct_value = st.slider(
|
| 339 |
+
"Correct",
|
| 340 |
+
min_value=0.0,
|
| 341 |
+
max_value=1.0,
|
| 342 |
+
value=0.0,
|
| 343 |
+
step=0.01,
|
| 344 |
+
format="%.2f",
|
| 345 |
+
key=f"emotion_{label}_correct"
|
| 346 |
+
)
|
| 347 |
+
with subcol_wrong:
|
| 348 |
+
wrong_value = st.slider(
|
| 349 |
+
"Wrong",
|
| 350 |
+
min_value=0.0,
|
| 351 |
+
max_value=1.0,
|
| 352 |
+
value=0.0,
|
| 353 |
+
step=0.01,
|
| 354 |
+
format="%.2f",
|
| 355 |
+
key=f"emotion_{label}_wrong"
|
| 356 |
+
)
|
| 357 |
+
emotion_feedback[label] = {"correct": correct_value, "wrong": wrong_value}
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
# Use form_submit_button instead of st.button inside a form
|
| 361 |
+
submit_feedback = st.form_submit_button("Submit Feedback")
|
| 362 |
+
|
| 363 |
+
if submit_feedback and feedback.strip() and feedback2.strip():
|
| 364 |
+
# Prepare data to insert
|
| 365 |
+
data_to_insert = {
|
| 366 |
+
"input_text": st.session_state.get("user_input_stage3", ""),
|
| 367 |
+
"correct_text_by_user": feedback,
|
| 368 |
+
"model_used": st.session_state.get("selected_model_stage3", "unknown"),
|
| 369 |
+
"wrong_pred_any": feedback2,
|
| 370 |
+
"sentiment_feedback": sentiment_feedback,
|
| 371 |
+
"emotion_feedback": emotion_feedback
|
| 372 |
+
}
|
| 373 |
+
st.error("Feedback submission is disabled in debug logging mode.")
|
| 374 |
+
# try:
|
| 375 |
+
# from supabase import create_client, Client
|
| 376 |
+
# from dotenv import load_dotenv
|
| 377 |
+
# load_dotenv() # or load_dotenv(dotenv_path=env_path) if you have a specific path
|
| 378 |
+
# supabase: Client = create_client(
|
| 379 |
+
# get_env_variable("SUPABASE_DB_TACHYGRAPHY_DB_URL"),
|
| 380 |
+
# get_env_variable("SUPABASE_DB_TACHYGRAPHY_ANON_API_KEY")
|
| 381 |
+
# )
|
| 382 |
+
# response = supabase.table(
|
| 383 |
+
# get_env_variable("SUPABASE_DB_TACHYGRAPHY_DB_STAGE3_TABLE")
|
| 384 |
+
# ).insert(data_to_insert, returning="minimal").execute()
|
| 385 |
+
# st.success("Feedback submitted successfully!")
|
| 386 |
+
# except Exception as e:
|
| 387 |
+
# st.error(f"Feedback submission failed: {e}")
|
data_collection_form/hmv_cfg_base_dcl/__init__.py
ADDED
|
File without changes
|
data_collection_form/hmv_cfg_base_dcl/imports.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
| 8 |
+
# import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import json
|
| 14 |
+
import gc
|
| 15 |
+
import psutil
|
| 16 |
+
import importlib
|
| 17 |
+
import importlib.util
|
| 18 |
+
import asyncio
|
| 19 |
+
# import pytorch_lightning as pl
|
| 20 |
+
|
| 21 |
+
import safetensors
|
| 22 |
+
from safetensors import load_file, save_file
|
| 23 |
+
import json
|
| 24 |
+
import huggingface_hub
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
emotionMoodtag_analysis/config/stage2_models.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"name": "DeBERTa v3 Base for Sequence Classification",
|
| 4 |
"type": "hf_automodel_finetuned_dbt3",
|
| 5 |
"module_path": "hmv_cfg_base_stage2.model1",
|
| 6 |
-
"hf_location": "
|
| 7 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 8 |
"model_class": "DebertaV2ForSequenceClassification",
|
| 9 |
"problem_type": "regression",
|
|
@@ -18,7 +18,7 @@
|
|
| 18 |
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
| 19 |
"type": "db3_base_custom",
|
| 20 |
"module_path": "hmv_cfg_base_stage2.model2",
|
| 21 |
-
"hf_location": "
|
| 22 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 23 |
"model_class": "EmotionModel",
|
| 24 |
"problem_type": "regression",
|
|
|
|
| 3 |
"name": "DeBERTa v3 Base for Sequence Classification",
|
| 4 |
"type": "hf_automodel_finetuned_dbt3",
|
| 5 |
"module_path": "hmv_cfg_base_stage2.model1",
|
| 6 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/DeBERTa-v3-seqClassfication-LV2-EmotionMoodtags-Batch8",
|
| 7 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 8 |
"model_class": "DebertaV2ForSequenceClassification",
|
| 9 |
"problem_type": "regression",
|
|
|
|
| 18 |
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
| 19 |
"type": "db3_base_custom",
|
| 20 |
"module_path": "hmv_cfg_base_stage2.model2",
|
| 21 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/DeBERTa-v3-Base-Cust-LV2-EmotionMoodtags-minRegLoss",
|
| 22 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 23 |
"model_class": "EmotionModel",
|
| 24 |
"problem_type": "regression",
|
poetry.lock
CHANGED
|
@@ -1249,14 +1249,14 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth
|
|
| 1249 |
|
| 1250 |
[[package]]
|
| 1251 |
name = "faker"
|
| 1252 |
-
version = "37.0
|
| 1253 |
description = "Faker is a Python package that generates fake data for you."
|
| 1254 |
optional = false
|
| 1255 |
python-versions = ">=3.9"
|
| 1256 |
groups = ["main"]
|
| 1257 |
files = [
|
| 1258 |
-
{file = "faker-37.0
|
| 1259 |
-
{file = "faker-37.0.
|
| 1260 |
]
|
| 1261 |
|
| 1262 |
[package.dependencies]
|
|
@@ -3152,24 +3152,20 @@ files = [
|
|
| 3152 |
|
| 3153 |
[[package]]
|
| 3154 |
name = "narwhals"
|
| 3155 |
-
version = "1.
|
| 3156 |
description = "Extremely lightweight compatibility layer between dataframe libraries"
|
| 3157 |
optional = false
|
| 3158 |
python-versions = ">=3.8"
|
| 3159 |
groups = ["main"]
|
| 3160 |
files = [
|
| 3161 |
-
{file = "narwhals-1.
|
| 3162 |
-
{file = "narwhals-1.
|
| 3163 |
]
|
| 3164 |
|
| 3165 |
[package.extras]
|
| 3166 |
-
core = ["duckdb", "pandas", "polars", "pyarrow", "sqlframe"]
|
| 3167 |
cudf = ["cudf (>=24.10.0)"]
|
| 3168 |
dask = ["dask[dataframe] (>=2024.8)"]
|
| 3169 |
-
dev = ["covdefaults", "hypothesis", "mypy (>=1.15.0,<1.16.0)", "pandas-stubs (==2.2.3.250308)", "polars (==1.25.2)", "pre-commit", "pyarrow-stubs (==17.18)", "pyright", "pytest", "pytest-cov", "pytest-env", "pytest-randomly", "sqlframe (==3.24.1)", "typing-extensions", "uv"]
|
| 3170 |
-
docs = ["black", "duckdb", "jinja2", "markdown-exec[ansi]", "mkdocs", "mkdocs-autorefs", "mkdocs-material", "mkdocstrings-python (>=1.16)", "mkdocstrings[python]", "pandas", "polars (>=1.0.0)", "pyarrow"]
|
| 3171 |
duckdb = ["duckdb (>=1.0)"]
|
| 3172 |
-
extra = ["scikit-learn"]
|
| 3173 |
ibis = ["ibis-framework (>=6.0.0)", "packaging", "pyarrow-hotfix", "rich"]
|
| 3174 |
modin = ["modin"]
|
| 3175 |
pandas = ["pandas (>=0.25.3)"]
|
|
@@ -3177,8 +3173,6 @@ polars = ["polars (>=0.20.3)"]
|
|
| 3177 |
pyarrow = ["pyarrow (>=11.0.0)"]
|
| 3178 |
pyspark = ["pyspark (>=3.5.0)"]
|
| 3179 |
sqlframe = ["sqlframe (>=3.22.0)"]
|
| 3180 |
-
tests = ["covdefaults", "hypothesis", "pytest", "pytest-cov", "pytest-env", "pytest-randomly"]
|
| 3181 |
-
typing = ["hypothesis", "mypy (>=1.15.0,<1.16.0)", "pandas-stubs (==2.2.3.250308)", "polars (==1.25.2)", "pyarrow-stubs (==17.18)", "pyright", "pytest", "sqlframe (==3.24.1)", "typing-extensions", "uv"]
|
| 3182 |
|
| 3183 |
[[package]]
|
| 3184 |
name = "nest-asyncio"
|
|
@@ -4617,14 +4611,14 @@ extra = ["pygments (>=2.19.1)"]
|
|
| 4617 |
|
| 4618 |
[[package]]
|
| 4619 |
name = "pyparsing"
|
| 4620 |
-
version = "3.2.
|
| 4621 |
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
|
| 4622 |
optional = false
|
| 4623 |
python-versions = ">=3.9"
|
| 4624 |
groups = ["main"]
|
| 4625 |
files = [
|
| 4626 |
-
{file = "pyparsing-3.2.
|
| 4627 |
-
{file = "pyparsing-3.2.
|
| 4628 |
]
|
| 4629 |
|
| 4630 |
[package.extras]
|
|
@@ -4659,14 +4653,14 @@ six = ">=1.5"
|
|
| 4659 |
|
| 4660 |
[[package]]
|
| 4661 |
name = "python-dotenv"
|
| 4662 |
-
version = "1.0
|
| 4663 |
description = "Read key-value pairs from a .env file and set them as environment variables"
|
| 4664 |
optional = false
|
| 4665 |
-
python-versions = ">=3.
|
| 4666 |
groups = ["main"]
|
| 4667 |
files = [
|
| 4668 |
-
{file = "
|
| 4669 |
-
{file = "python_dotenv-1.0.
|
| 4670 |
]
|
| 4671 |
|
| 4672 |
[package.extras]
|
|
@@ -4705,14 +4699,14 @@ test = ["cloudpickle (>=1.3)", "coverage (==7.3.1)", "fastapi", "numpy (>=1.17.2
|
|
| 4705 |
|
| 4706 |
[[package]]
|
| 4707 |
name = "pytz"
|
| 4708 |
-
version = "2025.
|
| 4709 |
description = "World timezone definitions, modern and historical"
|
| 4710 |
optional = false
|
| 4711 |
python-versions = "*"
|
| 4712 |
groups = ["main"]
|
| 4713 |
files = [
|
| 4714 |
-
{file = "pytz-2025.
|
| 4715 |
-
{file = "pytz-2025.
|
| 4716 |
]
|
| 4717 |
|
| 4718 |
[[package]]
|
|
@@ -6613,14 +6607,14 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,
|
|
| 6613 |
|
| 6614 |
[[package]]
|
| 6615 |
name = "transformers"
|
| 6616 |
-
version = "4.50.
|
| 6617 |
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
|
| 6618 |
optional = false
|
| 6619 |
python-versions = ">=3.9.0"
|
| 6620 |
groups = ["main"]
|
| 6621 |
files = [
|
| 6622 |
-
{file = "transformers-4.50.
|
| 6623 |
-
{file = "transformers-4.50.
|
| 6624 |
]
|
| 6625 |
|
| 6626 |
[package.dependencies]
|
|
|
|
| 1249 |
|
| 1250 |
[[package]]
|
| 1251 |
name = "faker"
|
| 1252 |
+
version = "37.1.0"
|
| 1253 |
description = "Faker is a Python package that generates fake data for you."
|
| 1254 |
optional = false
|
| 1255 |
python-versions = ">=3.9"
|
| 1256 |
groups = ["main"]
|
| 1257 |
files = [
|
| 1258 |
+
{file = "faker-37.1.0-py3-none-any.whl", hash = "sha256:dc2f730be71cb770e9c715b13374d80dbcee879675121ab51f9683d262ae9a1c"},
|
| 1259 |
+
{file = "faker-37.1.0.tar.gz", hash = "sha256:ad9dc66a3b84888b837ca729e85299a96b58fdaef0323ed0baace93c9614af06"},
|
| 1260 |
]
|
| 1261 |
|
| 1262 |
[package.dependencies]
|
|
|
|
| 3152 |
|
| 3153 |
[[package]]
|
| 3154 |
name = "narwhals"
|
| 3155 |
+
version = "1.32.0"
|
| 3156 |
description = "Extremely lightweight compatibility layer between dataframe libraries"
|
| 3157 |
optional = false
|
| 3158 |
python-versions = ">=3.8"
|
| 3159 |
groups = ["main"]
|
| 3160 |
files = [
|
| 3161 |
+
{file = "narwhals-1.32.0-py3-none-any.whl", hash = "sha256:8bdbf3f76155887412eea04b0b06303856ac1aa3d9e8bda5b5e54612855fa560"},
|
| 3162 |
+
{file = "narwhals-1.32.0.tar.gz", hash = "sha256:bd0aa41434737adb4b26f8593f3559abc7d938730ece010fe727b58bc363580d"},
|
| 3163 |
]
|
| 3164 |
|
| 3165 |
[package.extras]
|
|
|
|
| 3166 |
cudf = ["cudf (>=24.10.0)"]
|
| 3167 |
dask = ["dask[dataframe] (>=2024.8)"]
|
|
|
|
|
|
|
| 3168 |
duckdb = ["duckdb (>=1.0)"]
|
|
|
|
| 3169 |
ibis = ["ibis-framework (>=6.0.0)", "packaging", "pyarrow-hotfix", "rich"]
|
| 3170 |
modin = ["modin"]
|
| 3171 |
pandas = ["pandas (>=0.25.3)"]
|
|
|
|
| 3173 |
pyarrow = ["pyarrow (>=11.0.0)"]
|
| 3174 |
pyspark = ["pyspark (>=3.5.0)"]
|
| 3175 |
sqlframe = ["sqlframe (>=3.22.0)"]
|
|
|
|
|
|
|
| 3176 |
|
| 3177 |
[[package]]
|
| 3178 |
name = "nest-asyncio"
|
|
|
|
| 4611 |
|
| 4612 |
[[package]]
|
| 4613 |
name = "pyparsing"
|
| 4614 |
+
version = "3.2.3"
|
| 4615 |
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
|
| 4616 |
optional = false
|
| 4617 |
python-versions = ">=3.9"
|
| 4618 |
groups = ["main"]
|
| 4619 |
files = [
|
| 4620 |
+
{file = "pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf"},
|
| 4621 |
+
{file = "pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be"},
|
| 4622 |
]
|
| 4623 |
|
| 4624 |
[package.extras]
|
|
|
|
| 4653 |
|
| 4654 |
[[package]]
|
| 4655 |
name = "python-dotenv"
|
| 4656 |
+
version = "1.1.0"
|
| 4657 |
description = "Read key-value pairs from a .env file and set them as environment variables"
|
| 4658 |
optional = false
|
| 4659 |
+
python-versions = ">=3.9"
|
| 4660 |
groups = ["main"]
|
| 4661 |
files = [
|
| 4662 |
+
{file = "python_dotenv-1.1.0-py3-none-any.whl", hash = "sha256:d7c01d9e2293916c18baf562d95698754b0dbbb5e74d457c45d4f6561fb9d55d"},
|
| 4663 |
+
{file = "python_dotenv-1.1.0.tar.gz", hash = "sha256:41f90bc6f5f177fb41f53e87666db362025010eb28f60a01c9143bfa33a2b2d5"},
|
| 4664 |
]
|
| 4665 |
|
| 4666 |
[package.extras]
|
|
|
|
| 4699 |
|
| 4700 |
[[package]]
|
| 4701 |
name = "pytz"
|
| 4702 |
+
version = "2025.2"
|
| 4703 |
description = "World timezone definitions, modern and historical"
|
| 4704 |
optional = false
|
| 4705 |
python-versions = "*"
|
| 4706 |
groups = ["main"]
|
| 4707 |
files = [
|
| 4708 |
+
{file = "pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00"},
|
| 4709 |
+
{file = "pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3"},
|
| 4710 |
]
|
| 4711 |
|
| 4712 |
[[package]]
|
|
|
|
| 6607 |
|
| 6608 |
[[package]]
|
| 6609 |
name = "transformers"
|
| 6610 |
+
version = "4.50.1"
|
| 6611 |
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
|
| 6612 |
optional = false
|
| 6613 |
python-versions = ">=3.9.0"
|
| 6614 |
groups = ["main"]
|
| 6615 |
files = [
|
| 6616 |
+
{file = "transformers-4.50.1-py3-none-any.whl", hash = "sha256:e9b9bd274518150528c1d745c7ebba72d27e4e52f2deffaa1fddebad6912da5d"},
|
| 6617 |
+
{file = "transformers-4.50.1.tar.gz", hash = "sha256:6ee542d2cce7e1b6a06ae350599c27ddf2e6e45ec9d0cb42915b37fca3d6399a"},
|
| 6618 |
]
|
| 6619 |
|
| 6620 |
[package.dependencies]
|
pyproject.toml
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
[project]
|
| 2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
| 3 |
-
version = "2025.03.
|
| 4 |
description = ""
|
| 5 |
authors = [
|
| 6 |
{ name = "Archisman Karmakar", email = "[email protected]" },
|
|
|
|
| 1 |
[project]
|
| 2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
| 3 |
+
version = "2025.03.25.post1"
|
| 4 |
description = ""
|
| 5 |
authors = [
|
| 6 |
{ name = "Archisman Karmakar", email = "[email protected]" },
|
pyprojectOLD.toml
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
[project]
|
| 2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
| 3 |
-
version = "2025.03.
|
|
|
|
| 4 |
# version = "2025.03.21.post1"
|
| 5 |
# version = "2025.03.18.post5"
|
| 6 |
# version = "2025.03.18.post4_3"
|
|
|
|
| 1 |
[project]
|
| 2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
| 3 |
+
version = "2025.03.24.post1"
|
| 4 |
+
# version = "2025.03.22.post1"
|
| 5 |
# version = "2025.03.21.post1"
|
| 6 |
# version = "2025.03.18.post5"
|
| 7 |
# version = "2025.03.18.post4_3"
|
requirements.txt
CHANGED
|
@@ -45,7 +45,7 @@ entrypoints==0.4 ; python_version >= "3.12" and python_version < "4.0"
|
|
| 45 |
et-xmlfile==2.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 46 |
evaluate==0.4.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 47 |
executing==2.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 48 |
-
faker==37.0
|
| 49 |
fastjsonschema==2.21.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 50 |
favicon==0.7.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 51 |
filelock==3.18.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
@@ -111,7 +111,7 @@ msgpack==1.1.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
| 111 |
multidict==6.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 112 |
multiprocess==0.70.16 ; python_version >= "3.12" and python_version < "4.0"
|
| 113 |
namex==0.0.8 ; python_version >= "3.12" and python_version < "4.0"
|
| 114 |
-
narwhals==1.
|
| 115 |
nest-asyncio==1.6.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 116 |
networkx==3.4.2 ; python_version >= "3.12" and python_version < "4.0"
|
| 117 |
nltk==3.9.1 ; python_version >= "3.12" and python_version < "4.0"
|
|
@@ -164,12 +164,12 @@ pydantic==2.10.6 ; python_version >= "3.12" and python_version < "4.0"
|
|
| 164 |
pydeck==0.9.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 165 |
pygments==2.19.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 166 |
pymdown-extensions==10.14.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 167 |
-
pyparsing==3.2.
|
| 168 |
pyproject-hooks==1.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 169 |
python-dateutil==2.9.0.post0 ; python_version >= "3.12" and python_version < "4.0"
|
| 170 |
-
python-dotenv==1.0
|
| 171 |
pytorch-lightning==2.5.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 172 |
-
pytz==2025.
|
| 173 |
pywin32-ctypes==0.2.3 ; python_version >= "3.12" and python_version < "4.0" and sys_platform == "win32"
|
| 174 |
pywin32==309 ; python_version >= "3.12" and python_version < "4.0" and (sys_platform == "win32" or platform_system == "Windows")
|
| 175 |
pyyaml==6.0.2 ; python_version >= "3.12" and python_version < "4.0"
|
|
@@ -238,7 +238,7 @@ torchvision==0.21.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
| 238 |
tornado==6.4.2 ; python_version >= "3.12" and python_version < "4.0"
|
| 239 |
tqdm==4.67.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 240 |
traitlets==5.14.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 241 |
-
transformers==4.50.
|
| 242 |
triton==3.2.0 ; python_version >= "3.12" and python_version < "4.0" and platform_system == "Linux" and platform_machine == "x86_64"
|
| 243 |
trove-classifiers==2025.3.19.19 ; python_version >= "3.12" and python_version < "4.0"
|
| 244 |
typing-extensions==4.12.2 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
|
| 45 |
et-xmlfile==2.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 46 |
evaluate==0.4.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 47 |
executing==2.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 48 |
+
faker==37.1.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 49 |
fastjsonschema==2.21.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 50 |
favicon==0.7.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 51 |
filelock==3.18.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
|
| 111 |
multidict==6.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 112 |
multiprocess==0.70.16 ; python_version >= "3.12" and python_version < "4.0"
|
| 113 |
namex==0.0.8 ; python_version >= "3.12" and python_version < "4.0"
|
| 114 |
+
narwhals==1.32.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 115 |
nest-asyncio==1.6.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 116 |
networkx==3.4.2 ; python_version >= "3.12" and python_version < "4.0"
|
| 117 |
nltk==3.9.1 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
|
| 164 |
pydeck==0.9.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 165 |
pygments==2.19.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 166 |
pymdown-extensions==10.14.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 167 |
+
pyparsing==3.2.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 168 |
pyproject-hooks==1.2.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 169 |
python-dateutil==2.9.0.post0 ; python_version >= "3.12" and python_version < "4.0"
|
| 170 |
+
python-dotenv==1.1.0 ; python_version >= "3.12" and python_version < "4.0"
|
| 171 |
pytorch-lightning==2.5.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 172 |
+
pytz==2025.2 ; python_version >= "3.12" and python_version < "4.0"
|
| 173 |
pywin32-ctypes==0.2.3 ; python_version >= "3.12" and python_version < "4.0" and sys_platform == "win32"
|
| 174 |
pywin32==309 ; python_version >= "3.12" and python_version < "4.0" and (sys_platform == "win32" or platform_system == "Windows")
|
| 175 |
pyyaml==6.0.2 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
|
| 238 |
tornado==6.4.2 ; python_version >= "3.12" and python_version < "4.0"
|
| 239 |
tqdm==4.67.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 240 |
traitlets==5.14.3 ; python_version >= "3.12" and python_version < "4.0"
|
| 241 |
+
transformers==4.50.1 ; python_version >= "3.12" and python_version < "4.0"
|
| 242 |
triton==3.2.0 ; python_version >= "3.12" and python_version < "4.0" and platform_system == "Linux" and platform_machine == "x86_64"
|
| 243 |
trove-classifiers==2025.3.19.19 ; python_version >= "3.12" and python_version < "4.0"
|
| 244 |
typing-extensions==4.12.2 ; python_version >= "3.12" and python_version < "4.0"
|
sentimentPolarity_analysis/config/stage1_models.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"name": "DeBERTa v3 Base for Sequence Classification",
|
| 4 |
"type": "hf_automodel_finetuned_dbt3",
|
| 5 |
"module_path": "hmv_cfg_base_stage1.model1",
|
| 6 |
-
"hf_location": "
|
| 7 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 8 |
"model_class": "DebertaV2ForSequenceClassification",
|
| 9 |
"problem_type": "multi_label_classification",
|
|
@@ -18,7 +18,7 @@
|
|
| 18 |
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
| 19 |
"type": "db3_base_custom",
|
| 20 |
"module_path": "hmv_cfg_base_stage1.model2",
|
| 21 |
-
"hf_location": "
|
| 22 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 23 |
"model_class": "SentimentModel",
|
| 24 |
"problem_type": "multi_label_classification",
|
|
@@ -33,7 +33,7 @@
|
|
| 33 |
"name": "BERT Base Uncased Custom Model",
|
| 34 |
"type": "bert_base_uncased_custom",
|
| 35 |
"module_path": "hmv_cfg_base_stage1.model3",
|
| 36 |
-
"hf_location": "https://huggingface.co/
|
| 37 |
"tokenizer_class": "AutoTokenizer",
|
| 38 |
"model_class": "BERT_architecture",
|
| 39 |
"problem_type": "multi_label_classification",
|
|
@@ -48,7 +48,7 @@
|
|
| 48 |
"name": "LSTM Custom Model",
|
| 49 |
"type": "lstm_uncased_custom",
|
| 50 |
"module_path": "hmv_cfg_base_stage1.model4",
|
| 51 |
-
"hf_location": "
|
| 52 |
"tokenizer_class": "",
|
| 53 |
"model_class": "",
|
| 54 |
"problem_type": "multi_label_classification",
|
|
|
|
| 3 |
"name": "DeBERTa v3 Base for Sequence Classification",
|
| 4 |
"type": "hf_automodel_finetuned_dbt3",
|
| 5 |
"module_path": "hmv_cfg_base_stage1.model1",
|
| 6 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8",
|
| 7 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 8 |
"model_class": "DebertaV2ForSequenceClassification",
|
| 9 |
"problem_type": "multi_label_classification",
|
|
|
|
| 18 |
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
| 19 |
"type": "db3_base_custom",
|
| 20 |
"module_path": "hmv_cfg_base_stage1.model2",
|
| 21 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/DeBERTa-v3-Base-Cust-LV1-SentimentPolarities-minRegLoss",
|
| 22 |
"tokenizer_class": "DebertaV2Tokenizer",
|
| 23 |
"model_class": "SentimentModel",
|
| 24 |
"problem_type": "multi_label_classification",
|
|
|
|
| 33 |
"name": "BERT Base Uncased Custom Model",
|
| 34 |
"type": "bert_base_uncased_custom",
|
| 35 |
"module_path": "hmv_cfg_base_stage1.model3",
|
| 36 |
+
"hf_location": "https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25/BERT-LV1-SentimentPolarities/resolve/main/saved_weights.pt",
|
| 37 |
"tokenizer_class": "AutoTokenizer",
|
| 38 |
"model_class": "BERT_architecture",
|
| 39 |
"problem_type": "multi_label_classification",
|
|
|
|
| 48 |
"name": "LSTM Custom Model",
|
| 49 |
"type": "lstm_uncased_custom",
|
| 50 |
"module_path": "hmv_cfg_base_stage1.model4",
|
| 51 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/LSTM-LV1-SentimentPolarities",
|
| 52 |
"tokenizer_class": "",
|
| 53 |
"model_class": "",
|
| 54 |
"problem_type": "multi_label_classification",
|
stacked_stacking_stages/__init__.py
ADDED
|
File without changes
|
stacked_stacking_stages/hmv_cfg_base_stk_stg/__init__.py
ADDED
|
File without changes
|
stacked_stacking_stages/hmv_cfg_base_stk_stg/imports.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, AutoModelForSeq2SeqLM
|
| 8 |
+
# import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import json
|
| 14 |
+
import gc
|
| 15 |
+
import psutil
|
| 16 |
+
import importlib
|
| 17 |
+
import importlib.util
|
| 18 |
+
import asyncio
|
| 19 |
+
# import pytorch_lightning as pl
|
| 20 |
+
|
| 21 |
+
import safetensors
|
| 22 |
+
from safetensors import load_file, save_file
|
| 23 |
+
import json
|
| 24 |
+
import huggingface_hub
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
stacked_stacking_stages/stacking_stages.py
ADDED
|
@@ -0,0 +1,774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import shutil
|
| 2 |
+
from transformers.utils.hub import TRANSFORMERS_CACHE
|
| 3 |
+
import torch
|
| 4 |
+
import time
|
| 5 |
+
import joblib
|
| 6 |
+
import importlib.util
|
| 7 |
+
from imports import *
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import time
|
| 11 |
+
import uuid
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
# import psycopg2
|
| 16 |
+
from supabase import create_client, Client
|
| 17 |
+
from datetime import datetime, timezone
|
| 18 |
+
from collections import OrderedDict
|
| 19 |
+
|
| 20 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
| 21 |
+
|
| 22 |
+
env_path = os.path.join(os.path.dirname(__file__),
|
| 23 |
+
"..", ".devcontainer", ".env")
|
| 24 |
+
|
| 25 |
+
# from transformers.utils import move_cache_to_trash
|
| 26 |
+
# from huggingface_hub import delete_cache
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# from hmv_cfg_base_stage1.model1 import load_model as load_model1
|
| 30 |
+
# from hmv_cfg_base_stage1.model1 import predict as predict1
|
| 31 |
+
|
| 32 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 33 |
+
CONFIG_STAGE1 = os.path.join(BASE_DIR, "..", "sentimentPolarity_analysis", "config", "stage1_models.json")
|
| 34 |
+
CONFIG_STAGE2 = os.path.join(BASE_DIR, "..", "emotionMoodtag_analysis", "config", "stage2_models.json")
|
| 35 |
+
CONFIG_STAGE3 = os.path.join(BASE_DIR, "..", "transformation_and_Normalization", "config", "stage3_models.json")
|
| 36 |
+
LOADERS_STAGE_COLLECTOR = os.path.join(BASE_DIR, "hmv_cfg_base_dlc")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
EMOTION_MOODTAG_LABELS = [
|
| 40 |
+
"anger", "disgust", "fear", "joy", "neutral",
|
| 41 |
+
"sadness", "surprise"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
SENTIMENT_POLARITY_LABELS = [
|
| 45 |
+
"negative", "neutral", "positive"
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
current_model = None
|
| 50 |
+
current_tokenizer = None
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Enabling Resource caching
|
| 54 |
+
|
| 55 |
+
# Load environment variables from .env
|
| 56 |
+
load_dotenv()
|
| 57 |
+
|
| 58 |
+
# @st.cache_resource
|
| 59 |
+
# DATABASE_URL = os.environ.get("DATABASE_URL")
|
| 60 |
+
|
| 61 |
+
# def get_connection():
|
| 62 |
+
# # """Establish a connection to the database."""
|
| 63 |
+
# # return psycopg2.connect(os.environ.get("DATABASE_URL"))
|
| 64 |
+
# supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("anon_key"))
|
| 65 |
+
# return supabase
|
| 66 |
+
|
| 67 |
+
# @st.cache_resource
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def load_model_config1():
|
| 71 |
+
with open(CONFIG_STAGE1, "r") as f:
|
| 72 |
+
model_data = json.load(f)
|
| 73 |
+
# Convert model_data values to a list and take only the first two entries
|
| 74 |
+
top2_data = list(model_data.values())[:2]
|
| 75 |
+
# Create a dictionary mapping from model name to its configuration for the top two models
|
| 76 |
+
model_options = {v["name"]: v for v in top2_data}
|
| 77 |
+
return top2_data, model_options
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
MODEL_DATA1, MODEL_OPTIONS1 = load_model_config1()
|
| 82 |
+
|
| 83 |
+
# MODEL_DATA1_1=MODEL_DATA1[0]
|
| 84 |
+
# MODEL_OPTIONS1_1=MODEL_OPTIONS1[0]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def load_model_config2():
|
| 88 |
+
with open(CONFIG_STAGE2, "r") as f:
|
| 89 |
+
model_data = json.load(f)
|
| 90 |
+
# Convert model_data values to a list and take only the first two entries
|
| 91 |
+
top2_data = list(model_data.values())[:2]
|
| 92 |
+
# Create a dictionary mapping from model name to its configuration for the top two models
|
| 93 |
+
model_options = {v["name"]: v for v in top2_data}
|
| 94 |
+
return top2_data, model_options
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
MODEL_DATA2, MODEL_OPTIONS2 = load_model_config2()
|
| 98 |
+
|
| 99 |
+
# MODEL_DATA2_1=MODEL_DATA2[0]
|
| 100 |
+
# MODEL_OPTIONS2_1=MODEL_OPTIONS2[0]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def load_model_config3():
|
| 104 |
+
with open(CONFIG_STAGE3, "r") as f:
|
| 105 |
+
model_data = json.load(f)
|
| 106 |
+
# Convert model_data values to a list and take only the first two entries
|
| 107 |
+
top2_data = list(model_data.values())[:2]
|
| 108 |
+
# Create a dictionary mapping from model name to its configuration for the top two models
|
| 109 |
+
model_options = {v["name"]: v for v in top2_data}
|
| 110 |
+
return top2_data, model_options
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
MODEL_DATA3, MODEL_OPTIONS3 = load_model_config3()
|
| 115 |
+
|
| 116 |
+
# MODEL_DATA3_1=MODEL_DATA3[0]
|
| 117 |
+
# MODEL_OPTIONS3_1=MODEL_OPTIONS3[0]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# ✅ Dynamically Import Model Functions
|
| 121 |
+
def import_from_module(module_name, function_name):
|
| 122 |
+
try:
|
| 123 |
+
module = importlib.import_module(module_name)
|
| 124 |
+
return getattr(module, function_name)
|
| 125 |
+
except (ModuleNotFoundError, AttributeError) as e:
|
| 126 |
+
st.error(f"❌ Import Error: {e}")
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def free_memory():
|
| 131 |
+
# """Free up CPU & GPU memory before loading a new model."""
|
| 132 |
+
global current_model, current_tokenizer
|
| 133 |
+
|
| 134 |
+
if current_model is not None:
|
| 135 |
+
del current_model # Delete the existing model
|
| 136 |
+
current_model = None # Reset reference
|
| 137 |
+
|
| 138 |
+
if current_tokenizer is not None:
|
| 139 |
+
del current_tokenizer # Delete the tokenizer
|
| 140 |
+
current_tokenizer = None
|
| 141 |
+
|
| 142 |
+
gc.collect() # Force garbage collection for CPU memory
|
| 143 |
+
|
| 144 |
+
if torch.cuda.is_available():
|
| 145 |
+
torch.cuda.empty_cache() # Free GPU memory
|
| 146 |
+
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
|
| 147 |
+
|
| 148 |
+
# If running on CPU, reclaim memory using OS-level commands
|
| 149 |
+
try:
|
| 150 |
+
if torch.cuda.is_available() is False:
|
| 151 |
+
psutil.virtual_memory() # Refresh memory stats
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"Memory cleanup error: {e}")
|
| 154 |
+
|
| 155 |
+
# Delete cached Hugging Face models
|
| 156 |
+
try:
|
| 157 |
+
cache_dir = TRANSFORMERS_CACHE
|
| 158 |
+
if os.path.exists(cache_dir):
|
| 159 |
+
shutil.rmtree(cache_dir)
|
| 160 |
+
print("Cache cleared!")
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"❌ Cache cleanup error: {e}")
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def load_selected_model1(model_name):
|
| 166 |
+
global current_model, current_tokenizer
|
| 167 |
+
|
| 168 |
+
# st.cache_resource.clear()
|
| 169 |
+
|
| 170 |
+
# free_memory()
|
| 171 |
+
|
| 172 |
+
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models
|
| 173 |
+
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # ✅ Check selected model
|
| 174 |
+
# st.write("DEBUG: Model Name:", model_name) # ✅ Check selected model
|
| 175 |
+
|
| 176 |
+
if model_name not in MODEL_OPTIONS1:
|
| 177 |
+
st.error(f"⚠️ Model '{model_name}' not found in config!")
|
| 178 |
+
return None, None, None
|
| 179 |
+
|
| 180 |
+
model_info = MODEL_OPTIONS1[model_name]
|
| 181 |
+
hf_location = model_info["hf_location"]
|
| 182 |
+
|
| 183 |
+
model_module = model_info["module_path"]
|
| 184 |
+
load_function = model_info["load_function"]
|
| 185 |
+
predict_function = model_info["predict_function"]
|
| 186 |
+
|
| 187 |
+
load_model_func = import_from_module(model_module, load_function)
|
| 188 |
+
predict_func = import_from_module(model_module, predict_function)
|
| 189 |
+
|
| 190 |
+
if load_model_func is None or predict_func is None:
|
| 191 |
+
st.error("❌ Model functions could not be loaded!")
|
| 192 |
+
return None, None, None
|
| 193 |
+
|
| 194 |
+
model, tokenizer = load_model_func()
|
| 195 |
+
|
| 196 |
+
current_model, current_tokenizer = model, tokenizer
|
| 197 |
+
return model, tokenizer, predict_func
|
| 198 |
+
|
| 199 |
+
def load_selected_model2(model_name):
|
| 200 |
+
global current_model, current_tokenizer
|
| 201 |
+
|
| 202 |
+
# st.cache_resource.clear()
|
| 203 |
+
|
| 204 |
+
# free_memory()
|
| 205 |
+
|
| 206 |
+
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models
|
| 207 |
+
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # ✅ Check selected model
|
| 208 |
+
# st.write("DEBUG: Model Name:", model_name) # ✅ Check selected model
|
| 209 |
+
|
| 210 |
+
if model_name not in MODEL_OPTIONS2:
|
| 211 |
+
st.error(f"⚠️ Model '{model_name}' not found in config!")
|
| 212 |
+
return None, None, None
|
| 213 |
+
|
| 214 |
+
model_info = MODEL_OPTIONS2[model_name]
|
| 215 |
+
hf_location = model_info["hf_location"]
|
| 216 |
+
|
| 217 |
+
model_module = model_info["module_path"]
|
| 218 |
+
load_function = model_info["load_function"]
|
| 219 |
+
predict_function = model_info["predict_function"]
|
| 220 |
+
|
| 221 |
+
load_model_func = import_from_module(model_module, load_function)
|
| 222 |
+
predict_func = import_from_module(model_module, predict_function)
|
| 223 |
+
|
| 224 |
+
if load_model_func is None or predict_func is None:
|
| 225 |
+
st.error("❌ Model functions could not be loaded!")
|
| 226 |
+
return None, None, None
|
| 227 |
+
|
| 228 |
+
model, tokenizer = load_model_func()
|
| 229 |
+
|
| 230 |
+
current_model, current_tokenizer = model, tokenizer
|
| 231 |
+
return model, tokenizer, predict_func
|
| 232 |
+
|
| 233 |
+
def load_selected_model3(model_name):
|
| 234 |
+
global current_model, current_tokenizer
|
| 235 |
+
|
| 236 |
+
# st.cache_resource.clear()
|
| 237 |
+
|
| 238 |
+
# free_memory()
|
| 239 |
+
|
| 240 |
+
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models
|
| 241 |
+
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # ✅ Check selected model
|
| 242 |
+
# st.write("DEBUG: Model Name:", model_name) # ✅ Check selected model
|
| 243 |
+
|
| 244 |
+
if model_name not in MODEL_OPTIONS3:
|
| 245 |
+
st.error(f"⚠️ Model '{model_name}' not found in config!")
|
| 246 |
+
return None, None, None
|
| 247 |
+
|
| 248 |
+
model_info = MODEL_OPTIONS3[model_name]
|
| 249 |
+
hf_location = model_info["hf_location"]
|
| 250 |
+
|
| 251 |
+
model_module = model_info["module_path"]
|
| 252 |
+
load_function = model_info["load_function"]
|
| 253 |
+
predict_function = model_info["predict_function"]
|
| 254 |
+
|
| 255 |
+
load_model_func = import_from_module(model_module, load_function)
|
| 256 |
+
predict_func = import_from_module(model_module, predict_function)
|
| 257 |
+
|
| 258 |
+
if load_model_func is None or predict_func is None:
|
| 259 |
+
st.error("❌ Model functions could not be loaded!")
|
| 260 |
+
return None, None, None
|
| 261 |
+
|
| 262 |
+
model, tokenizer = load_model_func()
|
| 263 |
+
|
| 264 |
+
current_model, current_tokenizer = model, tokenizer
|
| 265 |
+
return model, tokenizer, predict_func
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def disable_ui():
|
| 269 |
+
st.components.v1.html(
|
| 270 |
+
"""
|
| 271 |
+
<style>
|
| 272 |
+
#ui-disable-overlay {
|
| 273 |
+
position: fixed;
|
| 274 |
+
top: 0;
|
| 275 |
+
left: 0;
|
| 276 |
+
width: 100vw;
|
| 277 |
+
height: 100vh;
|
| 278 |
+
background-color: rgba(200, 200, 200, 0.5);
|
| 279 |
+
z-index: 9999;
|
| 280 |
+
}
|
| 281 |
+
</style>
|
| 282 |
+
<div id="ui-disable-overlay"></div>
|
| 283 |
+
""",
|
| 284 |
+
height=0,
|
| 285 |
+
scrolling=False
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def enable_ui():
|
| 290 |
+
st.components.v1.html(
|
| 291 |
+
"""
|
| 292 |
+
<script>
|
| 293 |
+
var overlay = document.getElementById("ui-disable-overlay");
|
| 294 |
+
if (overlay) {
|
| 295 |
+
overlay.parentNode.removeChild(overlay);
|
| 296 |
+
}
|
| 297 |
+
</script>
|
| 298 |
+
""",
|
| 299 |
+
height=0,
|
| 300 |
+
scrolling=False
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# Function to increment progress dynamically
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def get_sentiment_emotion_graph_code(input_text, normalized_text, sentiment_array, emotion_array):
|
| 307 |
+
"""
|
| 308 |
+
Returns a Graphviz code string representing:
|
| 309 |
+
- Input Text as the root
|
| 310 |
+
- Normalized Text as a child
|
| 311 |
+
- A Sentiment node with its probabilities as children (using SENTIMENT_POLARITY_LABELS)
|
| 312 |
+
- An Emotion node with its probabilities as children (using EMOTION_MOODTAG_LABELS)
|
| 313 |
+
- Arrows from each sentiment node to the Emotion node with fixed penwidths (5 for highest, 3 for middle, 1 for lowest)
|
| 314 |
+
|
| 315 |
+
Both sentiment_array and emotion_array are NumPy arrays (possibly nested, e.g. [[values]]),
|
| 316 |
+
so they are squeezed before use.
|
| 317 |
+
"""
|
| 318 |
+
import numpy as np
|
| 319 |
+
|
| 320 |
+
# Flatten arrays in case they are nested
|
| 321 |
+
sentiment_flat = np.array(sentiment_array).squeeze()
|
| 322 |
+
emotion_flat = np.array(emotion_array).squeeze()
|
| 323 |
+
|
| 324 |
+
# Create pairs for each sentiment label with its probability
|
| 325 |
+
sentiment_pairs = list(zip(SENTIMENT_POLARITY_LABELS, sentiment_flat))
|
| 326 |
+
# Sort by probability (ascending)
|
| 327 |
+
sentiment_sorted = sorted(sentiment_pairs, key=lambda x: x[1])
|
| 328 |
+
|
| 329 |
+
# Create a penwidth map: label -> penwidth
|
| 330 |
+
penwidth_map = {}
|
| 331 |
+
|
| 332 |
+
# Collect all unique probabilities to handle ties
|
| 333 |
+
unique_probs = set(prob for _, prob in sentiment_sorted)
|
| 334 |
+
|
| 335 |
+
if len(unique_probs) == 1:
|
| 336 |
+
# All sentiments have the same probability; use mid-range width (e.g., 3) for all
|
| 337 |
+
for label, _ in sentiment_sorted:
|
| 338 |
+
penwidth_map[label] = 3
|
| 339 |
+
elif len(unique_probs) == 2:
|
| 340 |
+
# Two unique probabilities: assign min width 1 and max width 5 accordingly
|
| 341 |
+
min_prob = sentiment_sorted[0][1]
|
| 342 |
+
max_prob = sentiment_sorted[-1][1]
|
| 343 |
+
for label, prob in sentiment_sorted:
|
| 344 |
+
if prob == min_prob:
|
| 345 |
+
penwidth_map[label] = 1
|
| 346 |
+
else:
|
| 347 |
+
penwidth_map[label] = 5
|
| 348 |
+
else:
|
| 349 |
+
# For three distinct probabilities, assign 1 to the smallest, 3 to the middle, 5 to the largest.
|
| 350 |
+
penwidth_map[sentiment_sorted[0][0]] = 1
|
| 351 |
+
penwidth_map[sentiment_sorted[1][0]] = 3
|
| 352 |
+
penwidth_map[sentiment_sorted[2][0]] = 5
|
| 353 |
+
|
| 354 |
+
# Build the basic Graphviz structure
|
| 355 |
+
graph_code = f'''
|
| 356 |
+
digraph G {{
|
| 357 |
+
rankdir=TB;
|
| 358 |
+
node [shape=box, style="rounded,filled", fontname="Helvetica", fontsize=12];
|
| 359 |
+
|
| 360 |
+
Input [label="Input Text:\\n{input_text.replace('"', '\\"')}", fillcolor="#ffe6de", fontcolor="#000000"];
|
| 361 |
+
Normalized [label="Normalized Text:\\n{normalized_text.replace('"', '\\"')}", fillcolor="#ffe6de", fontcolor="#000000"];
|
| 362 |
+
Sentiment [label="Sentiment"];
|
| 363 |
+
Emotion [label="Emotion"];
|
| 364 |
+
|
| 365 |
+
Input -> Normalized;
|
| 366 |
+
Input -> Sentiment;
|
| 367 |
+
Sentiment -> Emotion;
|
| 368 |
+
'''
|
| 369 |
+
|
| 370 |
+
# Add sentiment nodes (displaying full values without truncation)
|
| 371 |
+
for label, prob in sentiment_pairs:
|
| 372 |
+
node_id = f"S_{label}"
|
| 373 |
+
graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#ecdeff", fontcolor="black"];'
|
| 374 |
+
graph_code += f'\n Sentiment -> {node_id};'
|
| 375 |
+
|
| 376 |
+
# Add emotion nodes (displaying full values)
|
| 377 |
+
for i, label in enumerate(EMOTION_MOODTAG_LABELS):
|
| 378 |
+
if i < len(emotion_flat):
|
| 379 |
+
prob = emotion_flat[i]
|
| 380 |
+
node_id = f"E_{label}"
|
| 381 |
+
graph_code += f'\n {node_id} [label="{label}: {prob}", fillcolor="#deffe1", fontcolor="black"];'
|
| 382 |
+
graph_code += f'\n Emotion -> {node_id};'
|
| 383 |
+
|
| 384 |
+
# Add arrows from each sentiment node to the Emotion node with fixed penwidth based on ranking
|
| 385 |
+
for label, prob in sentiment_pairs:
|
| 386 |
+
node_id = f"S_{label}"
|
| 387 |
+
pw = penwidth_map[label]
|
| 388 |
+
graph_code += f'\n {node_id} -> Emotion [penwidth={pw}];'
|
| 389 |
+
|
| 390 |
+
graph_code += "\n}"
|
| 391 |
+
return graph_code
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def get_env_variable(var_name):
|
| 399 |
+
# Try os.environ first (this covers local development and HF Spaces)
|
| 400 |
+
value = os.environ.get(var_name)
|
| 401 |
+
if value is None:
|
| 402 |
+
# Fall back to st.secrets if available (e.g., on Streamlit Cloud)
|
| 403 |
+
try:
|
| 404 |
+
value = st.secrets[var_name]
|
| 405 |
+
except KeyError:
|
| 406 |
+
value = None
|
| 407 |
+
return value
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def update_progress(progress_bar, start, end, delay=0.1):
|
| 411 |
+
for i in range(start, end + 1, 5): # Increment in steps of 5%
|
| 412 |
+
progress_bar.progress(i)
|
| 413 |
+
time.sleep(delay) # Simulate processing time
|
| 414 |
+
# st.experimental_rerun() # Refresh the page
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# Function to update session state when model changes
|
| 418 |
+
def on_model_change():
|
| 419 |
+
st.cache_data.clear()
|
| 420 |
+
st.cache_resource.clear()
|
| 421 |
+
free_memory()
|
| 422 |
+
st.session_state.model_changed = True # Mark model as changed
|
| 423 |
+
|
| 424 |
+
# Reset flags to trigger new prediction and show feedback form
|
| 425 |
+
st.session_state.prediction_generated = False
|
| 426 |
+
st.session_state.feedback_submitted = False
|
| 427 |
+
st.session_state.predictions = None
|
| 428 |
+
st.session_state.graphviz_code = None
|
| 429 |
+
st.session_state.last_processed_input = ""
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# Function to update session state when text changes
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def on_text_change():
|
| 436 |
+
st.session_state.text_changed = True # Mark text as changed
|
| 437 |
+
|
| 438 |
+
st.session_state.prediction_generated = False
|
| 439 |
+
st.session_state.feedback_submitted = False
|
| 440 |
+
st.session_state.predictions = None
|
| 441 |
+
st.session_state.graphviz_code = None
|
| 442 |
+
# st.session_state.last_processed_input = ""
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def update_top_k_from_slider():
|
| 446 |
+
st.session_state.top_k = st.session_state.top_k_slider
|
| 447 |
+
|
| 448 |
+
st.session_state.prediction_generated = False
|
| 449 |
+
st.session_state.feedback_submitted = False
|
| 450 |
+
st.session_state.predictions = None
|
| 451 |
+
st.session_state.graphviz_code = None
|
| 452 |
+
# st.session_state.last_processed_input = ""
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def update_top_k_from_input():
|
| 456 |
+
st.session_state.top_k = st.session_state.top_k_input
|
| 457 |
+
|
| 458 |
+
st.session_state.prediction_generated = False
|
| 459 |
+
st.session_state.feedback_submitted = False
|
| 460 |
+
st.session_state.predictions = None
|
| 461 |
+
st.session_state.graphviz_code = None
|
| 462 |
+
# st.session_state.last_processed_input = ""
|
| 463 |
+
|
| 464 |
+
def on_temperature_change():
|
| 465 |
+
st.session_state.prediction_generated = False
|
| 466 |
+
st.session_state.feedback_submitted = False
|
| 467 |
+
st.session_state.predictions = None
|
| 468 |
+
st.session_state.graphviz_code = None
|
| 469 |
+
# st.session_state.last_processed_input = ""
|
| 470 |
+
|
| 471 |
+
def on_top_p_change():
|
| 472 |
+
st.session_state.prediction_generated = False
|
| 473 |
+
st.session_state.feedback_submitted = False
|
| 474 |
+
st.session_state.predictions = None
|
| 475 |
+
st.session_state.graphviz_code = None
|
| 476 |
+
# st.session_state.last_processed_input = ""
|
| 477 |
+
|
| 478 |
+
def on_beam_checkbox_change():
|
| 479 |
+
st.session_state.prediction_generated = False
|
| 480 |
+
st.session_state.feedback_submitted = False
|
| 481 |
+
st.session_state.predictions = None
|
| 482 |
+
st.session_state.graphviz_code = None
|
| 483 |
+
# st.session_state.last_processed_input = ""
|
| 484 |
+
|
| 485 |
+
def on_enable_sampling_checkbox_change():
|
| 486 |
+
st.session_state.prediction_generated = False
|
| 487 |
+
st.session_state.feedback_submitted = False
|
| 488 |
+
st.session_state.predictions = None
|
| 489 |
+
st.session_state.graphviz_code = None
|
| 490 |
+
# st.session_state.last_processed_input = ""
|
| 491 |
+
|
| 492 |
+
def on_enable_earlyStopping_checkbox_change():
|
| 493 |
+
st.session_state.prediction_generated = False
|
| 494 |
+
st.session_state.feedback_submitted = False
|
| 495 |
+
st.session_state.predictions = None
|
| 496 |
+
st.session_state.graphviz_code = None
|
| 497 |
+
# st.session_state.last_processed_input = ""
|
| 498 |
+
|
| 499 |
+
def on_max_new_tokens_change():
|
| 500 |
+
st.session_state.prediction_generated = False
|
| 501 |
+
st.session_state.feedback_submitted = False
|
| 502 |
+
st.session_state.predictions = None
|
| 503 |
+
st.session_state.graphviz_code = None
|
| 504 |
+
# st.session_state.last_processed_input = ""
|
| 505 |
+
|
| 506 |
+
def on_num_return_sequences_change():
|
| 507 |
+
st.session_state.prediction_generated = False
|
| 508 |
+
st.session_state.feedback_submitted = False
|
| 509 |
+
st.session_state.predictions = None
|
| 510 |
+
st.session_state.graphviz_code = None
|
| 511 |
+
# st.session_state.last_processed_input = ""
|
| 512 |
+
|
| 513 |
+
# Initialize session state variables
|
| 514 |
+
if "selected_model1" not in st.session_state:
|
| 515 |
+
st.session_state.selected_model1 = list(MODEL_OPTIONS1.keys())[
|
| 516 |
+
0] # Default model
|
| 517 |
+
if "selected_model2" not in st.session_state:
|
| 518 |
+
st.session_state.selected_model2 = list(MODEL_OPTIONS2.keys())[
|
| 519 |
+
0]
|
| 520 |
+
if "selected_model3" not in st.session_state:
|
| 521 |
+
st.session_state.selected_model3 = list(MODEL_OPTIONS3.keys())[
|
| 522 |
+
0]
|
| 523 |
+
if "user_input" not in st.session_state:
|
| 524 |
+
st.session_state.user_input = ""
|
| 525 |
+
if "last_processed_input" not in st.session_state:
|
| 526 |
+
st.session_state.last_processed_input = ""
|
| 527 |
+
if "model_changed" not in st.session_state:
|
| 528 |
+
st.session_state.model_changed = False
|
| 529 |
+
if "text_changed" not in st.session_state:
|
| 530 |
+
st.session_state.text_changed = False
|
| 531 |
+
if "disabled" not in st.session_state:
|
| 532 |
+
st.session_state.disabled = False
|
| 533 |
+
|
| 534 |
+
if "top_k" not in st.session_state:
|
| 535 |
+
st.session_state.top_k = 50
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
if "last_change" not in st.session_state:
|
| 539 |
+
st.session_state.last_change = time.time()
|
| 540 |
+
if "auto_predict_triggered" not in st.session_state:
|
| 541 |
+
st.session_state.auto_predict_triggered = False
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
def show_stacking_stages():
|
| 548 |
+
# No cache clearing here—only in the model change callback!
|
| 549 |
+
|
| 550 |
+
# st.write(st.session_state)
|
| 551 |
+
|
| 552 |
+
if "last_change" not in st.session_state:
|
| 553 |
+
st.session_state.last_change = time.time()
|
| 554 |
+
if "auto_predict_triggered" not in st.session_state:
|
| 555 |
+
st.session_state.auto_predict_triggered = False
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
if "top_k" not in st.session_state:
|
| 559 |
+
st.session_state.top_k = 50
|
| 560 |
+
|
| 561 |
+
model_names1 = list(MODEL_OPTIONS1.keys())
|
| 562 |
+
model_names2 = list(MODEL_OPTIONS2.keys())
|
| 563 |
+
model_names3 = list(MODEL_OPTIONS3.keys())
|
| 564 |
+
|
| 565 |
+
st.title("Stacking all the best models together")
|
| 566 |
+
|
| 567 |
+
st.warning("If memory is low, this page may take a while to load or might fail too if memory overshoots or due to CUDA_Side_Device_Assertions.")
|
| 568 |
+
|
| 569 |
+
# Check if the stored selected model is valid; if not, reset it
|
| 570 |
+
if "selected_model1" in st.session_state:
|
| 571 |
+
if st.session_state.selected_model1 not in model_names1:
|
| 572 |
+
st.session_state.selected_model1 = model_names1[0]
|
| 573 |
+
else:
|
| 574 |
+
st.session_state.selected_model1 = model_names1[0]
|
| 575 |
+
|
| 576 |
+
if "selected_model2" in st.session_state:
|
| 577 |
+
if st.session_state.selected_model2 not in model_names2:
|
| 578 |
+
st.session_state.selected_model2 = model_names2[0]
|
| 579 |
+
else:
|
| 580 |
+
st.session_state.selected_model2 = model_names2[0]
|
| 581 |
+
|
| 582 |
+
if "selected_model3" in st.session_state:
|
| 583 |
+
if st.session_state.selected_model3 not in model_names3:
|
| 584 |
+
st.session_state.selected_model3 = model_names3[0]
|
| 585 |
+
else:
|
| 586 |
+
st.session_state.selected_model3 = model_names3[0]
|
| 587 |
+
|
| 588 |
+
# st.title("Stacking all the best models together")
|
| 589 |
+
st.write("This section handles the sentiment analysis and emotion analysis of informal text and then transformation and normalization of it into standard formal English.")
|
| 590 |
+
|
| 591 |
+
# Model selection with change detection; clearing cache happens in on_model_change()
|
| 592 |
+
col1, col2, col3 = st.columns(3)
|
| 593 |
+
with col1:
|
| 594 |
+
selected_model1 = st.selectbox(
|
| 595 |
+
"Choose a model:", model_names1, key="selected_model_stage1", on_change=on_model_change
|
| 596 |
+
)
|
| 597 |
+
with col2:
|
| 598 |
+
selected_model2 = st.selectbox(
|
| 599 |
+
"Choose a model:", model_names2, key="selected_model_stage2", on_change=on_model_change
|
| 600 |
+
)
|
| 601 |
+
with col3:
|
| 602 |
+
selected_model3 = st.selectbox(
|
| 603 |
+
"Choose a model:", model_names3, key="selected_model_stage3", on_change=on_model_change
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
# Text input with change detection
|
| 607 |
+
user_input = st.text_input(
|
| 608 |
+
"Enter text for emotions mood-tag analysis:", key="user_input_stage3", on_change=on_text_change
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
if st.session_state.get("last_processed_input", "") != user_input:
|
| 612 |
+
st.session_state.prediction_generated = False
|
| 613 |
+
st.session_state.feedback_submitted = False
|
| 614 |
+
|
| 615 |
+
st.markdown("#### Generation Parameters")
|
| 616 |
+
col1, col2 = st.columns(2)
|
| 617 |
+
|
| 618 |
+
with col1:
|
| 619 |
+
use_beam = st.checkbox("Use Beam Search", value=False, on_change=on_beam_checkbox_change)
|
| 620 |
+
if use_beam:
|
| 621 |
+
beams = st.number_input("Number of beams:", min_value=1, max_value=10, value=3, step=1, on_change=on_beam_checkbox_change)
|
| 622 |
+
do_sample = False
|
| 623 |
+
temp = None
|
| 624 |
+
top_p = None
|
| 625 |
+
top_k = None
|
| 626 |
+
else:
|
| 627 |
+
beams = None
|
| 628 |
+
do_sample = st.checkbox("Enable Sampling", value=True, on_change=on_enable_sampling_checkbox_change)
|
| 629 |
+
temp = st.slider("Temperature:", min_value=0.1, max_value=2.0, value=0.4, step=0.1, on_change=on_temperature_change) if do_sample else None
|
| 630 |
+
|
| 631 |
+
with col2:
|
| 632 |
+
top_p = st.slider("Top-p (nucleus sampling):", min_value=0.0, max_value=1.0, value=0.9, step=0.05, on_change=on_top_p_change) if (not use_beam and do_sample) else None
|
| 633 |
+
model_config = MODEL_OPTIONS3[selected_model3]
|
| 634 |
+
max_top_k = model_config.get("max_top_k", 50)
|
| 635 |
+
if not use_beam and do_sample:
|
| 636 |
+
col_slider, col_input = st.columns(2)
|
| 637 |
+
st.write("Top-K: Top K most probable tokens, recommended range: 10-60")
|
| 638 |
+
with col_slider:
|
| 639 |
+
top_k_slider = st.slider(
|
| 640 |
+
"Top-k (slider):",
|
| 641 |
+
min_value=0,
|
| 642 |
+
max_value=max_top_k,
|
| 643 |
+
value=st.session_state.top_k,
|
| 644 |
+
step=1,
|
| 645 |
+
key="top_k_slider",
|
| 646 |
+
on_change=update_top_k_from_slider
|
| 647 |
+
)
|
| 648 |
+
with col_input:
|
| 649 |
+
top_k_input = st.number_input(
|
| 650 |
+
"Top-k (number input):",
|
| 651 |
+
min_value=0,
|
| 652 |
+
max_value=max_top_k,
|
| 653 |
+
value=st.session_state.top_k,
|
| 654 |
+
step=1,
|
| 655 |
+
key="top_k_input",
|
| 656 |
+
on_change=update_top_k_from_input
|
| 657 |
+
)
|
| 658 |
+
final_top_k = st.session_state.top_k
|
| 659 |
+
else:
|
| 660 |
+
final_top_k = None
|
| 661 |
+
|
| 662 |
+
col_tokens, col_return = st.columns(2)
|
| 663 |
+
with col_tokens:
|
| 664 |
+
max_new_tokens = st.number_input("Max New Tokens:", min_value=1, value=1024, step=1, on_change=on_max_new_tokens_change)
|
| 665 |
+
early_stopping = st.checkbox("Early Stopping", value=True, on_change=on_enable_earlyStopping_checkbox_change)
|
| 666 |
+
with col_return:
|
| 667 |
+
if beams is not None:
|
| 668 |
+
num_return_sequences = st.number_input(
|
| 669 |
+
"Num Return Sequences:",
|
| 670 |
+
min_value=1,
|
| 671 |
+
max_value=beams,
|
| 672 |
+
value=1,
|
| 673 |
+
step=1,
|
| 674 |
+
on_change=on_num_return_sequences_change
|
| 675 |
+
)
|
| 676 |
+
else:
|
| 677 |
+
num_return_sequences = st.number_input(
|
| 678 |
+
"Num Return Sequences:",
|
| 679 |
+
min_value=1,
|
| 680 |
+
max_value=3,
|
| 681 |
+
value=1,
|
| 682 |
+
step=1,
|
| 683 |
+
on_change=on_num_return_sequences_change
|
| 684 |
+
)
|
| 685 |
+
user_input_copy = user_input
|
| 686 |
+
|
| 687 |
+
current_time = time.time()
|
| 688 |
+
if user_input.strip() and (current_time - st.session_state.last_change >= 1.25) and st.session_state.get("prediction_generated", False) is False:
|
| 689 |
+
st.session_state.last_processed_input = user_input
|
| 690 |
+
|
| 691 |
+
progress_bar = st.progress(0)
|
| 692 |
+
update_progress(progress_bar, 0, 10)
|
| 693 |
+
col_spinner, col_warning = st.columns(2)
|
| 694 |
+
|
| 695 |
+
with col_warning:
|
| 696 |
+
warning_placeholder = st.empty()
|
| 697 |
+
warning_placeholder.warning("Don't change the text data or any input parameters or switch models or pages while inference is loading...")
|
| 698 |
+
|
| 699 |
+
with col_spinner:
|
| 700 |
+
with st.spinner("Please wait, inference is loading..."):
|
| 701 |
+
model1, tokenizer1, predict_func1 = load_selected_model1(selected_model1)
|
| 702 |
+
model2, tokenizer2, predict_func2 = load_selected_model2(selected_model2)
|
| 703 |
+
model3, tokenizer3, predict_func3 = load_selected_model3(selected_model3)
|
| 704 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 705 |
+
if model1 is None:
|
| 706 |
+
st.error("⚠️ Error: Model 1 failed to load!")
|
| 707 |
+
st.stop()
|
| 708 |
+
if hasattr(model1, "to"):
|
| 709 |
+
model1.to(device)
|
| 710 |
+
if model2 is None:
|
| 711 |
+
st.error("⚠️ Error: Model 2 failed to load!")
|
| 712 |
+
st.stop()
|
| 713 |
+
if hasattr(model2, "to"):
|
| 714 |
+
model2.to(device)
|
| 715 |
+
if model3 is None:
|
| 716 |
+
st.error("⚠️ Error: Model 3 failed to load!")
|
| 717 |
+
st.stop()
|
| 718 |
+
if hasattr(model3, "to"):
|
| 719 |
+
model3.to(device)
|
| 720 |
+
predictions1 = predict_func1(user_input, model1, tokenizer1, device)
|
| 721 |
+
predictions2 = predict_func2(user_input, model2, tokenizer2, device)
|
| 722 |
+
predictions = predict_func3(
|
| 723 |
+
model3, tokenizer3, user_input, device,
|
| 724 |
+
num_return_sequences,
|
| 725 |
+
beams,
|
| 726 |
+
do_sample,
|
| 727 |
+
temp,
|
| 728 |
+
top_p,
|
| 729 |
+
final_top_k,
|
| 730 |
+
max_new_tokens,
|
| 731 |
+
early_stopping
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
update_progress(progress_bar, 10, 100)
|
| 735 |
+
|
| 736 |
+
warning_placeholder.empty()
|
| 737 |
+
|
| 738 |
+
st.session_state.predictions = predictions
|
| 739 |
+
st.session_state.predictions1 = predictions1
|
| 740 |
+
st.session_state.predictions2 = predictions2
|
| 741 |
+
print(predictions1)
|
| 742 |
+
print(predictions2)
|
| 743 |
+
if len(predictions) > 1:
|
| 744 |
+
st.write("### Most Probable Predictions:")
|
| 745 |
+
for i, pred in enumerate(predictions, start=1):
|
| 746 |
+
st.markdown(f"**Prediction Sequence {i}:** {pred}")
|
| 747 |
+
else:
|
| 748 |
+
st.write("### Predicted Sequence:")
|
| 749 |
+
st.write(predictions[0])
|
| 750 |
+
|
| 751 |
+
graph_code = get_sentiment_emotion_graph_code(user_input, predictions[0], predictions1, predictions2)
|
| 752 |
+
st.session_state.graphviz_code = graph_code
|
| 753 |
+
|
| 754 |
+
# Now display the graph from session state:
|
| 755 |
+
st.graphviz_chart(st.session_state.graphviz_code)
|
| 756 |
+
progress_bar.empty()
|
| 757 |
+
# else:
|
| 758 |
+
# st.info("Waiting for input to settle...")
|
| 759 |
+
|
| 760 |
+
# Mark that a prediction has been generated
|
| 761 |
+
st.session_state.prediction_generated = True
|
| 762 |
+
|
| 763 |
+
else:
|
| 764 |
+
# If predictions are already generated, display the stored ones
|
| 765 |
+
if st.session_state.get("predictions") and st.session_state.get("graphviz_code") and st.session_state.get("predictions2") and st.session_state.get("predictions1"):
|
| 766 |
+
predictions = st.session_state.predictions
|
| 767 |
+
if len(predictions) > 1:
|
| 768 |
+
st.write("### Most Probable Predictions:")
|
| 769 |
+
for i, pred in enumerate(predictions, start=1):
|
| 770 |
+
st.markdown(f"**Prediction Sequence {i}:** {pred}")
|
| 771 |
+
else:
|
| 772 |
+
st.write("### Predicted Sequence:")
|
| 773 |
+
st.write(predictions[0])
|
| 774 |
+
st.graphviz_chart(st.session_state.graphviz_code)
|
transformation_and_Normalization/config/stage3_models.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"name": "Facebook BART Base for Conditional Text Generation",
|
| 4 |
"type": "hf_automodel_finetuned_fbtctg",
|
| 5 |
"module_path": "hmv_cfg_base_stage3.model1",
|
| 6 |
-
"hf_location": "
|
| 7 |
"tokenizer_class": "BartTokenizer",
|
| 8 |
"model_class": "BartForConditionalGeneration",
|
| 9 |
"problem_type": "text_transformamtion_and_normalization",
|
|
@@ -18,7 +18,7 @@
|
|
| 18 |
"name": "Microsoft Prophet Net Uncased Large for Conditional Text Generation",
|
| 19 |
"type": "hf_automodel_finetuned_mstctg",
|
| 20 |
"module_path": "hmv_cfg_base_stage3.model2",
|
| 21 |
-
"hf_location": "
|
| 22 |
"tokenizer_class": "ProphetNetTokenizer",
|
| 23 |
"model_class": "ProphetNetForConditionalGeneration",
|
| 24 |
"problem_type": "text_transformamtion_and_normalization",
|
|
@@ -33,7 +33,7 @@
|
|
| 33 |
"name": "Google T5 v1.1 Base for Conditional Text Generation",
|
| 34 |
"type": "hf_automodel_finetuned_gt5tctg",
|
| 35 |
"module_path": "hmv_cfg_base_stage3.model3",
|
| 36 |
-
"hf_location": "
|
| 37 |
"tokenizer_class": "T5Tokenizer",
|
| 38 |
"model_class": "T5ForConditionalGeneration",
|
| 39 |
"problem_type": "text_transformamtion_and_normalization",
|
|
|
|
| 3 |
"name": "Facebook BART Base for Conditional Text Generation",
|
| 4 |
"type": "hf_automodel_finetuned_fbtctg",
|
| 5 |
"module_path": "hmv_cfg_base_stage3.model1",
|
| 6 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/BART-base-HF-Seq2Seq-Trainer-Batch4",
|
| 7 |
"tokenizer_class": "BartTokenizer",
|
| 8 |
"model_class": "BartForConditionalGeneration",
|
| 9 |
"problem_type": "text_transformamtion_and_normalization",
|
|
|
|
| 18 |
"name": "Microsoft Prophet Net Uncased Large for Conditional Text Generation",
|
| 19 |
"type": "hf_automodel_finetuned_mstctg",
|
| 20 |
"module_path": "hmv_cfg_base_stage3.model2",
|
| 21 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/ProphetNet_ForCondGen_Uncased_Large_HFTSeq2Seq_Batch4_ngram3",
|
| 22 |
"tokenizer_class": "ProphetNetTokenizer",
|
| 23 |
"model_class": "ProphetNetForConditionalGeneration",
|
| 24 |
"problem_type": "text_transformamtion_and_normalization",
|
|
|
|
| 33 |
"name": "Google T5 v1.1 Base for Conditional Text Generation",
|
| 34 |
"type": "hf_automodel_finetuned_gt5tctg",
|
| 35 |
"module_path": "hmv_cfg_base_stage3.model3",
|
| 36 |
+
"hf_location": "Tachygraphy-Microtext-Normalization-IEMK25/T5-1.1-HF-seq2seq-Trainer-Batch4",
|
| 37 |
"tokenizer_class": "T5Tokenizer",
|
| 38 |
"model_class": "T5ForConditionalGeneration",
|
| 39 |
"problem_type": "text_transformamtion_and_normalization",
|
transformation_and_Normalization/transformationNormalization_main.py
CHANGED
|
@@ -36,6 +36,11 @@ EMOTION_MOODTAG_LABELS = [
|
|
| 36 |
"sadness", "surprise"
|
| 37 |
]
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
current_model = None
|
| 40 |
current_tokenizer = None
|
| 41 |
|
|
@@ -490,54 +495,54 @@ def transform_and_normalize():
|
|
| 490 |
st.write(predictions[0])
|
| 491 |
|
| 492 |
# Only show the feedback form if a prediction has been generated
|
| 493 |
-
if st.session_state.get("prediction_generated", False):
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
|
| 539 |
-
|
| 540 |
-
|
| 541 |
|
| 542 |
if __name__ == "__main__":
|
| 543 |
transform_and_normalize()
|
|
|
|
| 36 |
"sadness", "surprise"
|
| 37 |
]
|
| 38 |
|
| 39 |
+
SENTIMENT_POLARITY_LABELS = [
|
| 40 |
+
"negative", "neutral", "positive"
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
current_model = None
|
| 45 |
current_tokenizer = None
|
| 46 |
|
|
|
|
| 495 |
st.write(predictions[0])
|
| 496 |
|
| 497 |
# Only show the feedback form if a prediction has been generated
|
| 498 |
+
# if st.session_state.get("prediction_generated", False):
|
| 499 |
+
# if not st.session_state.get("feedback_submitted", False):
|
| 500 |
+
# with st.form("feedback_form", clear_on_submit=True, border=False):
|
| 501 |
+
# st.error("New API keys are coming in Q2 2025, May 1st, old API authentication will be deprecated and blocked by Postgrest.")
|
| 502 |
+
# st.warning("This form and database are running in test mode, please be careful with your data.")
|
| 503 |
+
# st.write("### Data Collection Form")
|
| 504 |
+
# st.write("#### If the predictions generated are wrong, please provide feedback to help improve the model.")
|
| 505 |
+
# col1, col2 = st.columns(2)
|
| 506 |
+
# with col1:
|
| 507 |
+
# feedback = st.text_input(
|
| 508 |
+
# "Enter the correct expanded standard formal English text:",
|
| 509 |
+
# key="feedback_input"
|
| 510 |
+
# )
|
| 511 |
+
# with col2:
|
| 512 |
+
# feedback2 = st.text_input(
|
| 513 |
+
# "Enter any one of the wrongly predicted text:",
|
| 514 |
+
# key="feedback_input2"
|
| 515 |
+
# )
|
| 516 |
+
# submit_feedback = st.form_submit_button("Submit Feedback")
|
| 517 |
+
# if submit_feedback and feedback.strip() and feedback2.strip():
|
| 518 |
+
# data_to_insert = {
|
| 519 |
+
# # "id" : str(uuid.uuid4()), # text
|
| 520 |
+
# # "created_at": datetime.now(timezone.utc).isoformat(), # timestamp
|
| 521 |
+
# "input_text": user_input, # text
|
| 522 |
+
# "correct_text_by_user": feedback, # text
|
| 523 |
+
# "model_used": selected_model, # text
|
| 524 |
+
# "wrong_pred_any": feedback2 if feedback2.strip() else ""
|
| 525 |
+
# }
|
| 526 |
+
# # Here we use the supabase client already created above
|
| 527 |
+
# # supabase = get_connection()
|
| 528 |
+
# # load_dotenv()
|
| 529 |
+
# # print("SUPABASE_URL:", os.environ.get("SUPABASE_URL"))
|
| 530 |
+
# # print("anon_key:", os.environ.get("anon_key"))
|
| 531 |
+
# # print("table3_name:", os.environ.get("table3_name"))
|
| 532 |
+
# # load_dotenv(dotenv_path=env_path)
|
| 533 |
+
# # load_dotenv()
|
| 534 |
+
# # supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("anon_key"))
|
| 535 |
+
# # response = supabase.table(os.environ.get("table3_name")).insert(data_to_insert, returning="minimal").execute()
|
| 536 |
+
# try:
|
| 537 |
+
# supabase: Client = create_client(get_env_variable("SUPABASE_DB_TACHYGRAPHY_DB_URL"), get_env_variable("SUPABASE_DB_TACHYGRAPHY_ANON_API_KEY"))
|
| 538 |
+
# response = supabase.table(get_env_variable("SUPABASE_DB_TACHYGRAPHY_DB_STAGE3_TABLE")).insert(data_to_insert, returning="minimal").execute()
|
| 539 |
+
# st.success("Feedback submitted successfully!")
|
| 540 |
+
# st.session_state.feedback_submitted = True
|
| 541 |
+
# except Exception as e:
|
| 542 |
+
# st.error(f"Feedback submission failed: {e}")
|
| 543 |
|
| 544 |
+
# else:
|
| 545 |
+
# st.info("Feedback already submitted for this prediction.")
|
| 546 |
|
| 547 |
if __name__ == "__main__":
|
| 548 |
transform_and_normalize()
|