Spaces:
No application file
No application file
Create whisper2_asr.py
Browse files- whisper2_asr.py +35 -0
whisper2_asr.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
|
4 |
+
# Set the model ID for Whisper small English model
|
5 |
+
model_id = "openai/whisper-small.en"
|
6 |
+
|
7 |
+
# Function to send audio to Hugging Face Inference API and get transcription
|
8 |
+
def transcribe(audio):
|
9 |
+
if audio is None:
|
10 |
+
return "No audio provided."
|
11 |
+
|
12 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
13 |
+
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_TOKEN"}
|
14 |
+
|
15 |
+
# Read and send the audio file
|
16 |
+
with open(audio, "rb") as f:
|
17 |
+
data = f.read()
|
18 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
19 |
+
|
20 |
+
# Return the transcription or error
|
21 |
+
if response.status_code == 200:
|
22 |
+
return response.json().get("text", "No text returned.")
|
23 |
+
else:
|
24 |
+
return f"Error: {response.status_code} - {response.text}"
|
25 |
+
|
26 |
+
# Gradio Interface
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=transcribe,
|
29 |
+
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
30 |
+
outputs=gr.Textbox(label="Transcribed Text"),
|
31 |
+
title="Speech Recognition with Whisper",
|
32 |
+
description="Upload an audio file and get the transcribed text using OpenAI Whisper (small.en)."
|
33 |
+
)
|
34 |
+
|
35 |
+
interface.launch()
|