Talha812 commited on
Commit
a68f74a
Β·
verified Β·
1 Parent(s): d7dbc09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +104 -0
app.py CHANGED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from groq import Groq
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from PyPDF2 import PdfReader
8
+ import streamlit as st
9
+ from tempfile import NamedTemporaryFile
10
+
11
+ # Initialize Groq client
12
+ client = Groq(api_key=os.environ['GROQ_API_KEY'])
13
+
14
+ # Function to extract text from a PDF
15
+ def extract_text_from_pdf(pdf_file_path):
16
+ pdf_reader = PdfReader(pdf_file_path)
17
+ text = ""
18
+ for page in pdf_reader.pages:
19
+ page_text = page.extract_text()
20
+ if page_text:
21
+ text += page_text
22
+ return text
23
+
24
+ # Function to split text into chunks
25
+ def chunk_text(text, chunk_size=500, chunk_overlap=50):
26
+ text_splitter = RecursiveCharacterTextSplitter(
27
+ chunk_size=chunk_size, chunk_overlap=chunk_overlap
28
+ )
29
+ return text_splitter.split_text(text)
30
+
31
+ # Function to create embeddings and store them in FAISS
32
+ def create_embeddings_and_store(chunks, vector_db=None):
33
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
34
+ if vector_db is None:
35
+ vector_db = FAISS.from_texts(chunks, embedding=embeddings)
36
+ else:
37
+ vector_db.add_texts(chunks)
38
+ return vector_db
39
+
40
+ # Function to query the vector database and interact with Groq
41
+ def query_vector_db(query, vector_db):
42
+ docs = vector_db.similarity_search(query, k=3)
43
+ context = "\n".join([doc.page_content for doc in docs])
44
+ chat_completion = client.chat.completions.create(
45
+ messages=[
46
+ {"role": "system", "content": f"Use the following context:\n{context}"},
47
+ {"role": "user", "content": query},
48
+ ],
49
+ model="llama3-8b-8192",
50
+ )
51
+ return chat_completion.choices[0].message.content
52
+
53
+ # Function to convert Google Drive view link to downloadable link
54
+ def get_direct_download_link(view_url):
55
+ if "drive.google.com/file/d/" in view_url:
56
+ file_id = view_url.split("/file/d/")[1].split("/")[0]
57
+ return f"https://drive.google.com/uc?export=download&id={file_id}"
58
+ return None
59
+
60
+ # Function to download and save a PDF from a URL
61
+ def download_pdf_from_url(url):
62
+ direct_url = get_direct_download_link(url)
63
+ if not direct_url:
64
+ return None
65
+ response = requests.get(direct_url)
66
+ if response.status_code == 200:
67
+ temp_file = NamedTemporaryFile(delete=False, suffix=".pdf")
68
+ temp_file.write(response.content)
69
+ temp_file.close()
70
+ return temp_file.name
71
+ else:
72
+ return None
73
+
74
+ # Streamlit app
75
+ st.title("RAG-Based QA on Google Drive PDFs")
76
+
77
+ # Only fetch from provided links
78
+ doc_links = [
79
+ "https://drive.google.com/file/d/1YWX-RYxgtcKO1QETnz1N3rboZUhRZwcH/view?usp=sharing",
80
+ "https://drive.google.com/file/d/1JPf0XvDhn8QoDOlZDrxCOpu4WzKFESNz/view?usp=sharing",
81
+ ]
82
+
83
+ vector_db = None
84
+
85
+ # Process Google Drive documents
86
+ for idx, link in enumerate(doc_links):
87
+ st.write(f"πŸ“„ Fetching and processing PDF from Link {idx + 1}...")
88
+ pdf_path = download_pdf_from_url(link)
89
+ if pdf_path:
90
+ text = extract_text_from_pdf(pdf_path)
91
+ chunks = chunk_text(text)
92
+ vector_db = create_embeddings_and_store(chunks, vector_db=vector_db)
93
+ st.success(f"βœ… Processed document {idx + 1}")
94
+ else:
95
+ st.error(f"❌ Failed to download or process PDF from Link {idx + 1}")
96
+
97
+ # User query input
98
+ user_query = st.text_input("πŸ” Enter your query:")
99
+ if user_query and vector_db:
100
+ response = query_vector_db(user_query, vector_db)
101
+ st.subheader("πŸ’¬ Response from LLM:")
102
+ st.write(response)
103
+ elif user_query:
104
+ st.warning("⚠️ No documents processed to query.")