import os import requests from groq import Groq from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from PyPDF2 import PdfReader import streamlit as st from tempfile import NamedTemporaryFile # Initialize Groq client client = Groq(api_key=os.environ['GROQ_API_KEY']) # Function to extract text from a PDF def extract_text_from_pdf(pdf_file_path): pdf_reader = PdfReader(pdf_file_path) text = "" for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text return text # Function to split text into chunks def chunk_text(text, chunk_size=500, chunk_overlap=50): text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) return text_splitter.split_text(text) # Function to create embeddings and store them in FAISS def create_embeddings_and_store(chunks, vector_db=None): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") if vector_db is None: vector_db = FAISS.from_texts(chunks, embedding=embeddings) else: vector_db.add_texts(chunks) return vector_db # Function to query the vector database and interact with Groq def query_vector_db(query, vector_db): docs = vector_db.similarity_search(query, k=3) context = "\n".join([doc.page_content for doc in docs]) chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": f"Use the following context:\n{context}"}, {"role": "user", "content": query}, ], model="llama3-8b-8192", ) return chat_completion.choices[0].message.content # Function to convert Google Drive view link to downloadable link def get_direct_download_link(view_url): if "drive.google.com/file/d/" in view_url: file_id = view_url.split("/file/d/")[1].split("/")[0] return f"https://drive.google.com/uc?export=download&id={file_id}" return None # Function to download and save a PDF from a URL def download_pdf_from_url(url): direct_url = get_direct_download_link(url) if not direct_url: return None response = requests.get(direct_url) if response.status_code == 200: temp_file = NamedTemporaryFile(delete=False, suffix=".pdf") temp_file.write(response.content) temp_file.close() return temp_file.name else: return None # Streamlit app st.title("RAG-Based QA on Google Drive PDFs") # Only fetch from provided links doc_links = [ "https://drive.google.com/file/d/1YWX-RYxgtcKO1QETnz1N3rboZUhRZwcH/view?usp=sharing", "https://drive.google.com/file/d/1JPf0XvDhn8QoDOlZDrxCOpu4WzKFESNz/view?usp=sharing", ] vector_db = None # Process Google Drive documents for idx, link in enumerate(doc_links): st.write(f"📄 Fetching and processing PDF from Link {idx + 1}...") pdf_path = download_pdf_from_url(link) if pdf_path: text = extract_text_from_pdf(pdf_path) chunks = chunk_text(text) vector_db = create_embeddings_and_store(chunks, vector_db=vector_db) st.success(f"✅ Processed document {idx + 1}") else: st.error(f"❌ Failed to download or process PDF from Link {idx + 1}") # User query input user_query = st.text_input("🔍 Enter your query:") if user_query and vector_db: response = query_vector_db(user_query, vector_db) st.subheader("💬 Response from LLM:") st.write(response) elif user_query: st.warning("⚠️ No documents processed to query.")