import os from groq import Groq from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from PyPDF2 import PdfReader import streamlit as st from tempfile import NamedTemporaryFile # Initialize Groq client client = Groq(api_key="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") # Function to extract text from a PDF def extract_text_from_pdf(pdf_file_path): pdf_reader = PdfReader(pdf_file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() return text # Function to split text into chunks def chunk_text(text, chunk_size=500, chunk_overlap=50): text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) return text_splitter.split_text(text) # Function to create embeddings and store them in FAISS def create_embeddings_and_store(chunks, vector_db=None): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") if vector_db is None: vector_db = FAISS.from_texts(chunks, embedding=embeddings) else: vector_db.add_texts(chunks) return vector_db # Function to query the vector database and interact with Groq def query_vector_db(query, vector_db): # Retrieve relevant documents docs = vector_db.similarity_search(query, k=3) context = "\n".join([doc.page_content for doc in docs]) # Interact with Groq API chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": f"Use the following context:\n{context}"}, {"role": "user", "content": query}, ], model="llama3-8b-8192", ) return chat_completion.choices[0].message.content # Streamlit app st.title("RAG-Based Application QA") # Upload PDFs uploaded_files = st.file_uploader("Upload PDF documents", type=["pdf"], accept_multiple_files=True) if uploaded_files: vector_db = None # Initialize an empty vector DB for uploaded_file in uploaded_files: with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(uploaded_file.read()) pdf_path = temp_file.name # Extract text text = extract_text_from_pdf(pdf_path) st.write(f"Text extracted from: {uploaded_file.name}") # Chunk text chunks = chunk_text(text) st.write(f"Text chunked from: {uploaded_file.name}") # Generate embeddings and store in FAISS vector_db = create_embeddings_and_store(chunks, vector_db=vector_db) st.write(f"Embeddings generated and stored for: {uploaded_file.name}") # User query input user_query = st.text_input("Enter your query:") if user_query: response = query_vector_db(user_query, vector_db) st.write("Response from LLM:") st.write(response)