import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch MODEL_NAME = "Tamazight-NLP/NLLB-200-600M-Tamazight-All-Data-1.25-epoch" REVISION = "7cacdb000c5a6264150f203a595f6cd681e20844" NLLB_LANG_MAPPING = { "English": "eng_Latn", "Standard Moroccan Tamazight": "tzm_Tfng", "Tachelhit/Central Atlas Tamazight": "taq_Tfng", "Tachelhit/Central Atlas Tamazight (Latin)": "taq_Latn", "Tarifit (Latin)": "kab_Latn", "Moroccan Darija": "ary_Arab", "Catalan": "cat_Latn", "Spanish": "spa_Latn", "French": "fra_Latn", "Modern Standard Arabic": "arb_Arab", "German": "deu_Latn", "Dutch": "nld_Latn", "Russian": "rus_Cyrl", "Italian": "ita_Latn", "Turkish": "tur_Latn", "Esperanto": "epo_Latn" } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, revision=REVISION).to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, revision=REVISION) def translate(text, source_lang, target_lang, max_length=238, num_beams=4): """ Translate text from source language to target language """ print(text) tokenizer.src_lang = NLLB_LANG_MAPPING[source_lang] inputs = tokenizer(text, return_tensors="pt").to(model.device) translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(NLLB_LANG_MAPPING[target_lang]), max_length=max_length, num_beams=num_beams ) translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] return translation gradio_ui= gr.Interface( fn=translate, title="NLLB Tamazight Translation Demo", inputs= [ gr.components.Textbox(label="Text", lines=4, placeholder="ⵙⵙⴽⵛⵎ ⴰⴹⵕⵉⵚ...\nEnter text to translate..."), gr.components.Dropdown(label="Source Language", choices=list(NLLB_LANG_MAPPING.keys()), value="English"), gr.components.Dropdown(label="Target Language", choices=list(NLLB_LANG_MAPPING.keys()), value="Standard Moroccan Tamazight"), gr.components.Slider(8, 400, value=238, step=8, label="Max Length (in tokens). Increase in case the output looks truncated."), gr.components.Slider(1, 25, value=4, step=1, label="Number of beams. Higher values might improve translation accuracy at the cost of speed.") ], outputs=gr.components.Textbox(label="Translated text") ) gradio_ui.launch()