File size: 15,165 Bytes
217a100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import re
from wordcloud import WordCloud
from textstat import flesch_reading_ease, flesch_kincaid_grade
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
import warnings
warnings.filterwarnings('ignore')
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
class SkinDiseaseEDA:
def __init__(self, filepath):
self.filepath = filepath
self.data = []
self.articles = []
self.load_data()
def load_data(self):
"""Parse the structured text file into articles"""
with open(self.filepath, 'r', encoding='utf-8') as file:
content = file.read()
# Split by separator
articles = content.split('------------------------------------------------------------')
for article in articles:
if not article.strip():
continue
lines = article.strip().split('\n')
article_data = {
'title': '',
'journal': '',
'authors': '',
'abstract': '',
'diagnosis': '',
'treatment': ''
}
current_section = None
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('Journal:'):
current_section = 'journal'
article_data['journal'] = line.replace('Journal:', '').strip()
elif line.startswith('Authors:'):
current_section = 'authors'
article_data['authors'] = line.replace('Authors:', '').strip()
elif line.startswith('Abstract:'):
current_section = 'abstract'
article_data['abstract'] = line.replace('Abstract:', '').strip()
elif line == 'Diagnosis':
current_section = 'diagnosis'
elif line == 'Treatment Remedies':
current_section = 'treatment'
elif current_section == 'abstract' and not line.startswith(('Journal:', 'Authors:', 'Diagnosis', 'Treatment')):
article_data['abstract'] += ' ' + line
elif current_section == 'diagnosis' and not line.startswith(('Journal:', 'Authors:', 'Abstract:', 'Treatment')):
article_data['diagnosis'] += ' ' + line
elif current_section == 'treatment' and not line.startswith(('Journal:', 'Authors:', 'Abstract:', 'Diagnosis')):
article_data['treatment'] += ' ' + line
elif not any(line.startswith(prefix) for prefix in ['Journal:', 'Authors:', 'Abstract:', 'Diagnosis', 'Treatment']) and not current_section:
article_data['title'] = line
# Clean up data
for key in article_data:
article_data[key] = article_data[key].strip()
if article_data['title']:
self.articles.append(article_data)
def basic_statistics(self):
"""Generate basic statistics about the corpus"""
print("=== BASIC CORPUS STATISTICS ===")
print(f"Total articles: {len(self.articles)}")
# Text length statistics
abstract_lengths = [len(article['abstract']) for article in self.articles if article['abstract']]
title_lengths = [len(article['title']) for article in self.articles if article['title']]
print(f"Articles with abstracts: {len(abstract_lengths)}")
print(f"Average abstract length: {np.mean(abstract_lengths):.1f} characters")
print(f"Average title length: {np.mean(title_lengths):.1f} characters")
# Word counts
abstract_words = [len(article['abstract'].split()) for article in self.articles if article['abstract']]
print(f"Average abstract word count: {np.mean(abstract_words):.1f} words")
# Diagnosis and treatment availability
with_diagnosis = sum(1 for article in self.articles if article['diagnosis'] and article['diagnosis'] != 'Not specified.')
with_treatment = sum(1 for article in self.articles if article['treatment'])
print(f"Articles with specific diagnosis: {with_diagnosis} ({with_diagnosis/len(self.articles)*100:.1f}%)")
print(f"Articles with treatment info: {with_treatment} ({with_treatment/len(self.articles)*100:.1f}%)")
return {
'total_articles': len(self.articles),
'abstract_lengths': abstract_lengths,
'title_lengths': title_lengths,
'abstract_words': abstract_words,
'with_diagnosis': with_diagnosis,
'with_treatment': with_treatment
}
def journal_analysis(self):
"""Analyze journal distribution"""
print("\n=== JOURNAL ANALYSIS ===")
journals = [article['journal'] for article in self.articles if article['journal']]
journal_counts = Counter(journals)
print(f"Total unique journals: {len(journal_counts)}")
print("Top 10 journals:")
for journal, count in journal_counts.most_common(10):
print(f" {journal}: {count} articles")
# Create visualization
plt.figure(figsize=(12, 8))
top_journals = dict(journal_counts.most_common(15))
plt.barh(list(top_journals.keys()), list(top_journals.values()))
plt.title('Top 15 Journals by Article Count')
plt.xlabel('Number of Articles')
plt.tight_layout()
plt.show()
return journal_counts
def author_analysis(self):
"""Analyze author patterns"""
print("\n=== AUTHOR ANALYSIS ===")
all_authors = []
for article in self.articles:
if article['authors']:
# Split authors by comma
authors = [author.strip() for author in article['authors'].split(',')]
all_authors.extend(authors)
author_counts = Counter(all_authors)
print(f"Total unique authors: {len(author_counts)}")
print(f"Total author instances: {len(all_authors)}")
print(f"Average authors per article: {len(all_authors)/len(self.articles):.1f}")
print("Top 10 most prolific authors:")
for author, count in author_counts.most_common(10):
print(f" {author}: {count} articles")
# Author collaboration network size
author_counts_per_article = [len(article['authors'].split(',')) for article in self.articles if article['authors']]
print(f"Average collaboration size: {np.mean(author_counts_per_article):.1f} authors per article")
return author_counts
def disease_analysis(self):
"""Analyze disease mentions and patterns"""
print("\n=== DISEASE AND CONDITION ANALYSIS ===")
# Common disease terms
disease_terms = [
'cancer', 'carcinoma', 'melanoma', 'psoriasis', 'dermatitis', 'eczema',
'acne', 'rosacea', 'vitiligo', 'lupus', 'scleroderma', 'pemphigus',
'bullous', 'urticaria', 'mastocytosis', 'lymphoma', 'sarcoma',
'basal cell', 'squamous cell', 'keratosis', 'mycosis', 'fungal',
'bacterial', 'viral', 'herpes', 'warts', 'molluscum', 'impetigo'
]
# Count mentions in titles and abstracts
disease_counts = Counter()
for article in self.articles:
text = (article['title'] + ' ' + article['abstract']).lower()
for term in disease_terms:
if term in text:
disease_counts[term] += 1
print("Top 15 disease/condition mentions:")
for disease, count in disease_counts.most_common(15):
print(f" {disease}: {count} mentions")
# Create visualization
plt.figure(figsize=(12, 8))
top_diseases = dict(disease_counts.most_common(15))
plt.barh(list(top_diseases.keys()), list(top_diseases.values()))
plt.title('Top 15 Disease/Condition Mentions')
plt.xlabel('Number of Mentions')
plt.tight_layout()
plt.show()
return disease_counts
def treatment_analysis(self):
"""Analyze treatment patterns"""
print("\n=== TREATMENT ANALYSIS ===")
# Common treatment terms
treatment_terms = [
'therapy', 'treatment', 'drug', 'medication', 'topical', 'oral',
'systemic', 'immunosuppressive', 'corticosteroid', 'antibiotic',
'antifungal', 'antiviral', 'chemotherapy', 'radiotherapy',
'surgical', 'laser', 'phototherapy', 'immunotherapy', 'biologic',
'methotrexate', 'cyclosporine', 'tacrolimus', 'rituximab'
]
treatment_counts = Counter()
for article in self.articles:
text = (article['treatment'] + ' ' + article['abstract']).lower()
for term in treatment_terms:
if term in text:
treatment_counts[term] += 1
print("Top 15 treatment mentions:")
for treatment, count in treatment_counts.most_common(15):
print(f" {treatment}: {count} mentions")
# Create visualization
plt.figure(figsize=(12, 8))
top_treatments = dict(treatment_counts.most_common(15))
plt.barh(list(top_treatments.keys()), list(top_treatments.values()))
plt.title('Top 15 Treatment Mentions')
plt.xlabel('Number of Mentions')
plt.tight_layout()
plt.show()
return treatment_counts
def keyword_analysis(self):
"""Perform keyword analysis using TF-IDF"""
print("\n=== KEYWORD ANALYSIS ===")
# Combine title and abstract for each article
documents = []
for article in self.articles:
doc = article['title'] + ' ' + article['abstract']
documents.append(doc)
# TF-IDF analysis
stop_words = set(stopwords.words('english'))
stop_words.update(['study', 'research', 'analysis', 'results', 'conclusion', 'background', 'methods'])
vectorizer = TfidfVectorizer(
max_features=100,
stop_words=list(stop_words),
ngram_range=(1, 2),
min_df=2,
max_df=0.8
)
tfidf_matrix = vectorizer.fit_transform(documents)
feature_names = vectorizer.get_feature_names_out()
# Get top keywords
mean_scores = np.mean(tfidf_matrix.toarray(), axis=0)
top_indices = np.argsort(mean_scores)[::-1][:20]
print("Top 20 keywords by TF-IDF score:")
for i, idx in enumerate(top_indices):
print(f" {i+1}. {feature_names[idx]}: {mean_scores[idx]:.4f}")
# Create word cloud
all_text = ' '.join(documents)
wordcloud = WordCloud(
width=800,
height=400,
background_color='white',
stopwords=stop_words,
max_words=100
).generate(all_text)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Skin Disease Articles')
plt.tight_layout()
plt.show()
return feature_names, mean_scores
def readability_analysis(self):
"""Analyze text readability"""
print("\n=== READABILITY ANALYSIS ===")
flesch_scores = []
grade_levels = []
for article in self.articles:
if article['abstract']:
try:
flesch_score = flesch_reading_ease(article['abstract'])
grade_level = flesch_kincaid_grade(article['abstract'])
flesch_scores.append(flesch_score)
grade_levels.append(grade_level)
except:
continue
print(f"Average Flesch Reading Ease Score: {np.mean(flesch_scores):.1f}")
print(f"Average Grade Level: {np.mean(grade_levels):.1f}")
# Interpretation
avg_flesch = np.mean(flesch_scores)
if avg_flesch >= 90:
difficulty = "Very Easy"
elif avg_flesch >= 80:
difficulty = "Easy"
elif avg_flesch >= 70:
difficulty = "Fairly Easy"
elif avg_flesch >= 60:
difficulty = "Standard"
elif avg_flesch >= 50:
difficulty = "Fairly Difficult"
elif avg_flesch >= 30:
difficulty = "Difficult"
else:
difficulty = "Very Difficult"
print(f"Reading Difficulty: {difficulty}")
return flesch_scores, grade_levels
def generate_summary_report(self):
"""Generate a comprehensive summary report"""
print("\n" + "="*50)
print("COMPREHENSIVE EDA SUMMARY REPORT")
print("="*50)
# Run all analyses
basic_stats = self.basic_statistics()
journal_counts = self.journal_analysis()
author_counts = self.author_analysis()
disease_counts = self.disease_analysis()
treatment_counts = self.treatment_analysis()
keywords, scores = self.keyword_analysis()
flesch_scores, grade_levels = self.readability_analysis()
# Summary insights
print("\n=== KEY INSIGHTS ===")
print(f"1. Corpus contains {basic_stats['total_articles']} articles from {len(journal_counts)} unique journals")
print(f"2. Most common disease area: {disease_counts.most_common(1)[0][0] if disease_counts else 'N/A'}")
print(f"3. Most common treatment approach: {treatment_counts.most_common(1)[0][0] if treatment_counts else 'N/A'}")
print(f"4. Average reading level: Grade {np.mean(grade_levels):.1f}")
print(f"5. {basic_stats['with_diagnosis']} articles have specific diagnosis information")
print(f"6. {basic_stats['with_treatment']} articles contain treatment information")
def main():
# Initialize EDA
eda = SkinDiseaseEDA('skin_disease_articles_clean.txt')
# Generate comprehensive report
eda.generate_summary_report()
# Set up plotting style
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
print("\n" + "="*50)
print("EDA ANALYSIS COMPLETE")
print("="*50)
if __name__ == "__main__":
main()
|