File size: 1,124 Bytes
217a100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Prepare dataset
def load_dataset(file_path, tokenizer, block_size=128):
    return TextDataset(
        tokenizer=tokenizer,
        file_path=file_path,
        block_size=block_size
    )

train_dataset = load_dataset("skin_disease_articles_clean.txt", tokenizer)

data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer, mlm=False
)

training_args = TrainingArguments(
    output_dir="./tinyllama-finetuned-skin",
    overwrite_output_dir=True,
    num_train_epochs=1,
    per_device_train_batch_size=2,
    save_steps=500,
    save_total_limit=2,
    prediction_loss_only=True,
    fp16=False  # Set True if using GPU with float16 support
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=train_dataset,
)

trainer.train()