|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
with open("skin_disease_articles_clean.txt", "r", encoding="utf-8") as f: |
|
prompt = f.readline().strip() |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |