skin / xai_analysis.py
Kalyangotimothy
new
217a100
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from transformers import LlamaTokenizer, LlamaForCausalLM
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import lime
from lime.lime_text import LimeTextExplainer
import shap
import re
import warnings
warnings.filterwarnings('ignore')
class LLMExplainabilityAnalyzer:
def __init__(self, model_path, tokenizer_path=None):
"""Initialize with model and tokenizer paths"""
self.model_path = model_path
self.tokenizer_path = tokenizer_path or model_path
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load model and tokenizer
self.load_model()
# Initialize explanation tools
self.lime_explainer = LimeTextExplainer(class_names=['Generated Text'])
def load_model(self):
"""Load the fine-tuned model and tokenizer"""
try:
print(f"Loading model from: {self.model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Set padding token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {e}")
# Fallback to base model
print("Loading base TinyLlama model...")
self.tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def extract_attention_weights(self, text, max_length=512):
"""Extract attention weights for visualization"""
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=max_length,
truncation=True,
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, output_attentions=True)
attentions = outputs.attentions
# Get tokens
tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
return attentions, tokens
def visualize_attention_heads(self, text, layer_idx=0, head_idx=0, max_length=512):
"""Visualize attention patterns for specific layer and head"""
attentions, tokens = self.extract_attention_weights(text, max_length)
# Get attention weights for specific layer and head
attention_weights = attentions[layer_idx][0, head_idx].cpu().numpy()
# Create heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(
attention_weights,
xticklabels=tokens,
yticklabels=tokens,
cmap='Blues',
cbar=True
)
plt.title(f'Attention Weights - Layer {layer_idx}, Head {head_idx}')
plt.xlabel('Key Tokens')
plt.ylabel('Query Tokens')
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
return attention_weights, tokens
def attention_rollout(self, text, max_length=512):
"""Compute attention rollout for global attention patterns"""
attentions, tokens = self.extract_attention_weights(text, max_length)
# Convert to numpy
attention_matrices = [att[0].mean(dim=0).cpu().numpy() for att in attentions]
# Compute rollout
rollout = attention_matrices[0]
for attention_matrix in attention_matrices[1:]:
rollout = np.matmul(rollout, attention_matrix)
# Visualize rollout
plt.figure(figsize=(12, 8))
sns.heatmap(
rollout,
xticklabels=tokens,
yticklabels=tokens,
cmap='Reds',
cbar=True
)
plt.title('Attention Rollout - Global Attention Flow')
plt.xlabel('Key Tokens')
plt.ylabel('Query Tokens')
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
return rollout, tokens
def gradient_saliency(self, text, target_token_idx=None, max_length=512):
"""Compute gradient-based saliency maps"""
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=max_length,
truncation=True,
padding=True
).to(self.device)
# Enable gradients for embeddings
embeddings = self.model.get_input_embeddings()
inputs_embeds = embeddings(inputs['input_ids'])
inputs_embeds.requires_grad_(True)
# Forward pass
outputs = self.model(inputs_embeds=inputs_embeds, attention_mask=inputs['attention_mask'])
# Get target logits (last token if not specified)
if target_token_idx is None:
target_token_idx = -1
target_logits = outputs.logits[0, target_token_idx]
target_prob = F.softmax(target_logits, dim=-1)
# Compute gradients
target_prob.max().backward()
# Get saliency scores
saliency_scores = inputs_embeds.grad.norm(dim=-1).squeeze().cpu().numpy()
tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
# Visualize saliency
plt.figure(figsize=(15, 6))
colors = plt.cm.Reds(saliency_scores / saliency_scores.max())
for i, (token, score) in enumerate(zip(tokens, saliency_scores)):
plt.bar(i, score, color=colors[i])
plt.text(i, score + 0.001, token, rotation=45, ha='left', va='bottom')
plt.title('Gradient Saliency Scores')
plt.xlabel('Token Position')
plt.ylabel('Saliency Score')
plt.tight_layout()
plt.show()
return saliency_scores, tokens
def lime_explanation(self, text, num_samples=1000):
"""Generate LIME explanations"""
def predict_fn(texts):
"""Prediction function for LIME"""
predictions = []
for text in texts:
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits[0, -1]
probs = F.softmax(logits, dim=-1)
# Return probability distribution
predictions.append(probs.cpu().numpy())
except:
# Return uniform distribution if error
predictions.append(np.ones(self.tokenizer.vocab_size) / self.tokenizer.vocab_size)
return np.array(predictions)
# Generate explanation
explanation = self.lime_explainer.explain_instance(
text,
predict_fn,
num_features=20,
num_samples=num_samples
)
# Visualize explanation
explanation.show_in_notebook(text=True)
return explanation
def activation_analysis(self, text, layer_indices=None, max_length=512):
"""Analyze hidden layer activations"""
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=max_length,
truncation=True,
padding=True
).to(self.device)
# Hook to capture activations
activations = {}
def hook_fn(name):
def hook(module, input, output):
activations[name] = output.detach()
return hook
# Register hooks
if layer_indices is None:
layer_indices = [0, len(self.model.model.layers)//2, len(self.model.model.layers)-1]
hooks = []
for idx in layer_indices:
if idx < len(self.model.model.layers):
hook = self.model.model.layers[idx].register_forward_hook(hook_fn(f'layer_{idx}'))
hooks.append(hook)
# Forward pass
with torch.no_grad():
outputs = self.model(**inputs)
# Remove hooks
for hook in hooks:
hook.remove()
# Analyze activations
tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
for layer_name, activation in activations.items():
# Get activation statistics
activation_np = activation[0].cpu().numpy()
# Plot activation distribution
plt.figure(figsize=(12, 6))
# Heatmap of activations
plt.subplot(1, 2, 1)
sns.heatmap(activation_np.T, cmap='viridis', cbar=True)
plt.title(f'{layer_name} Activations')
plt.xlabel('Token Position')
plt.ylabel('Hidden Dimension')
# Activation magnitude per token
plt.subplot(1, 2, 2)
activation_magnitudes = np.linalg.norm(activation_np, axis=1)
plt.bar(range(len(tokens)), activation_magnitudes)
plt.title(f'{layer_name} Activation Magnitudes')
plt.xlabel('Token Position')
plt.ylabel('Magnitude')
plt.xticks(range(len(tokens)), tokens, rotation=45)
plt.tight_layout()
plt.show()
def token_importance_analysis(self, text, method='attention', max_length=512):
"""Analyze token importance using different methods"""
results = {}
if method == 'attention':
# Attention-based importance
attentions, tokens = self.extract_attention_weights(text, max_length)
# Average attention across layers and heads
avg_attention = torch.stack([att.mean(dim=1) for att in attentions]).mean(dim=0)
importance_scores = avg_attention[0].sum(dim=0).cpu().numpy()
elif method == 'gradient':
# Gradient-based importance
importance_scores, tokens = self.gradient_saliency(text, max_length=max_length)
# Create importance dataframe
importance_df = pd.DataFrame({
'token': tokens,
'importance': importance_scores
})
# Sort by importance
importance_df = importance_df.sort_values('importance', ascending=False)
# Visualize top important tokens
plt.figure(figsize=(12, 6))
top_tokens = importance_df.head(20)
plt.barh(range(len(top_tokens)), top_tokens['importance'])
plt.yticks(range(len(top_tokens)), top_tokens['token'])
plt.title(f'Top 20 Important Tokens ({method.title()} Method)')
plt.xlabel('Importance Score')
plt.tight_layout()
plt.show()
return importance_df
def semantic_similarity_analysis(self, texts, max_length=512):
"""Analyze semantic similarity between different texts"""
embeddings = []
for text in texts:
inputs = self.tokenizer(
text,
return_tensors="pt",
max_length=max_length,
truncation=True,
padding=True
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
# Use last layer, last token embedding
embedding = outputs.hidden_states[-1][0, -1].cpu().numpy()
embeddings.append(embedding)
# Compute similarity matrix
similarity_matrix = cosine_similarity(embeddings)
# Visualize similarity matrix
plt.figure(figsize=(10, 8))
sns.heatmap(
similarity_matrix,
annot=True,
cmap='viridis',
xticklabels=[f'Text {i+1}' for i in range(len(texts))],
yticklabels=[f'Text {i+1}' for i in range(len(texts))]
)
plt.title('Semantic Similarity Matrix')
plt.tight_layout()
plt.show()
return similarity_matrix
def generate_explanation_report(self, text, output_file='xai_report.html'):
"""Generate comprehensive explanation report"""
print("Generating comprehensive XAI report...")
# Run all analyses
print("1. Extracting attention patterns...")
attention_weights, tokens = self.visualize_attention_heads(text)
print("2. Computing attention rollout...")
rollout, _ = self.attention_rollout(text)
print("3. Calculating gradient saliency...")
saliency_scores, _ = self.gradient_saliency(text)
print("4. Analyzing activations...")
self.activation_analysis(text)
print("5. Computing token importance...")
importance_df = self.token_importance_analysis(text)
# Create summary
print("\n=== XAI ANALYSIS SUMMARY ===")
print(f"Input text: {text[:100]}...")
print(f"Number of tokens: {len(tokens)}")
print(f"Most important tokens: {importance_df.head(5)['token'].tolist()}")
print(f"Average attention entropy: {np.mean(-np.sum(attention_weights * np.log(attention_weights + 1e-10), axis=1)):.4f}")
return {
'attention_weights': attention_weights,
'rollout': rollout,
'saliency_scores': saliency_scores,
'importance_df': importance_df,
'tokens': tokens
}
def main():
"""Main function to run XAI analysis"""
# Initialize analyzer (adjust model path as needed)
try:
analyzer = LLMExplainabilityAnalyzer("./fine_tuned_model")
except:
print("Fine-tuned model not found. Using base model for demonstration.")
analyzer = LLMExplainabilityAnalyzer("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
# Sample skin disease text for analysis
sample_text = """
Patient presents with erythematous scaly patches on the elbows and knees,
consistent with psoriasis. The condition appears to be chronic with periods
of exacerbation. Treatment options include topical corticosteroids and
phototherapy for mild to moderate cases.
"""
print("Starting XAI Analysis...")
print("=" * 50)
# Generate comprehensive report
results = analyzer.generate_explanation_report(sample_text)
# Additional analyses
print("\n6. Semantic similarity analysis...")
test_texts = [
"Psoriasis treatment with topical corticosteroids",
"Eczema management using moisturizers",
"Melanoma diagnosis and surgical intervention"
]
similarity_matrix = analyzer.semantic_similarity_analysis(test_texts)
print("\n" + "=" * 50)
print("XAI ANALYSIS COMPLETE")
print("=" * 50)
return results
if __name__ == "__main__":
main()